경기만 수역에서 미세생물 군집의 계절적 변동 연구 I. 박테리아와 종속영양 미소 편모류

The Study on the Seasonal Variation of Microbial Community in Kyeonggi Bay, Korea 1. Bacteria and Heterotrophic nanoflagellates

  • 발행 : 2003.02.01

초록

경기만 수역의 표영 생태계에서 박테리아 생물량과 생산력 그리고 종속영양 미소 편모류의 계절 변동 및 박테리아에 대한 종속영양 미소편모류의 섭식률를 조사하기 위하여, 고정 정점에서 1997년 12월부터 1998년 11월까지 한달 간격으로 조사하였다. 박테리아 생물량과 이차 생산력은 각각 0.38$\times$$10^{9}$ ~ 3.25$\times$$10^{9}$ cells 1$^{-1}$(평균 1.19$\pm$ 0.69$\times$ $10^{9}$ cells 1$^{-1}$)와 1.51~ 20.4 cells 1$^{-1}$h$^{-1}$(평균 6.04$\pm$ 1.88$\times$$10^{6}$cells 1$^{-1}$h$^{-1}$)로 변하였으며, 5월과 9월에 가장 높게 분포하였다. 박테리아 생물량과 생산력은 간조와 만조에 따른 큰 차이를 보이지 않았으며. 특히 박테리아 생물량은 수직분포에 차이를 보이지 않았으나 박테리아 생산력은 저층으로 갈수록 다소 감소하는 양상을 보였다. 박테리아 생물량과 생산력의 계절적 분포는 용존 유기탄소의 농도와 유사한 분포 특성을 보였다. 또한 종속영양 미소 편모류의 현존량 분포는 388~4,374 cells ml$^{-1}$(평균 1,344$\pm$130 cells ml$^{-1}$)로 변하였으며, 3월, 4월과 7월, 8월에 가장 높은 분포를 보였다. 종속영양 미소 편모류는 간조와 만조에 따른 차이를 보이지 않았으며, 수직적 분포 특성에도 차이를 보이지 않았다. 박테리아에 대한 종속영양 미소 편모류의 개체군 섭식률은 1.0x$10^{6}$~6.3$\times$$10^{6}$ bacteria 1$^{-1}$h$^{-1}$(평균 3.12$\pm$0.55$\times$$10^{6}$ bacteria 1$^{-1}$h$^{-1}$)로 나타났으며, 종속영양 미소 편모류의 개체군 섭식은 박테리아 이차생산의 19.4~141.4% (평균 62.3$\pm$12.0%)를 제거하는 것으로 나타났다. 박테리아에 대한 종속영양 미소 편모류의 섭식률과 박테리아 이차 생산력에 대한 제거율은 종속영양 미소 편모류의 현존량과 높은 상관을 보였다. 조사수역의 박테리아 생물량과 생산력은 일차적으로 엽록소-a와 용존 유기탄소에 의해 크게 영향을 받았으나, 3월에는 식물플랑크톤의 대량증식이 있었음에도 불구하고 낮은 용존 유기탄소와 낮은 수온으로 인하여 박테리아 생물량과 생산력이 낮아 식물플랑크톤과 상관관계가 없는 것으로 나타났으며, 동계를 제외한 시기에는 종속영양 미소 편모류의 섭식압에 의해 영향을 받은 것으로 사료된다.

Seasonal variations of bacterial abundance and production, heterotrophic nanoflagellate (HNF) abundance and HNF ingestion rates on bacteria using FLB together with environmental variables were investigated at intervals of a month in Kyeonggi Bay from December 1991 to November 1998. Bacterial abundance and production ranged from 0.38$\times$10$^{9}$ ~ 3.25$\times$10$^{9}$ cells 1$^{-1}$ (average 1.19$\pm$0.69$\times$10$^{9}$ cells 1$^{-1}$ ) and from 1.51 to 20.4 cells 1$^{-1}$ h$^{-1}$ (average 6.04$\pm$ 1.88$\times$10$^{6}$ cells 1$^{-1}$ h$^{-1}$ ), respectively. Bacterial abundance and production showed no differences at the high tide and low tide, and bacterial abundances were not different with depth, but bacterial production decreased with depth. Seasonal variation of bacterial abundance showed almost similar fluctuation pattern to those of DOC (dissolved organic carbon). HNF abundances ranged from 388 to 4,374 cells ml$^{-1}$ (average 1,344$\pm$130 cells ml$^{-1}$ ), were high in March, April, July and August. HNF abundance showed no difference between the high tide and low tide, and was not different with depth. The ingestion rates of HNF on bacteria were 1.0 to 6.3$\pm$10$^{6}$ bacteria 1$^{-1}$ h$^{-1}$ (average 3.12$\pm$0.55$\times$10$^{6}$ bacteria 1$^{-1}$ h$^{-1}$ ), resulting ingestion rates of HNF removed 19.4 to 141.4 %(average 62.3$\pm$12.0%) of bacterial production. Ingestion rates and grazing pressure of HNF on bacteria showed high correlation with HNF abundance. Although we cannot exactly discussion about seasonal variation of bacteria community in this study area where physical and chemical parameters were very complex, the results indicate that bacterial abundance and production were mainly controlled by resources supply as dissolved organic carbon and chlorophyll-a(bottom-up) except March which bacterial abundance and production uncoupled chlorophyll-a because of low dissolved organic carbon and low temperature, and were controlled by HNF grazing pressure(top-down) in the warm seasons except the winter.

키워드

참고문헌

  1. 인하대학교 이학석사 학위 논문 경기만에서 식물플랑크톤 군집구조와 색소의 월간변동 송태윤
  2. 인하대학교 이학박사 학위 논문 인천연안 미소형 및 소형 동물플랑크톤의 생태학적 연구 양은진
  3. Aquat. Microb. Ecol. v.25 Physiological responses of marine and brackish water bacterial assemblages in a tidal estuary (Ria de Aveiro, Portugal) Almeida, M.A.;M.A. Cunha;F. Alcantara https://doi.org/10.3354/ame025113
  4. Microb. Ecol. v.42 Loss of estuarine bacteria by viral infection and predation in microcosm conditions Almeida, M.A.;M.A. Cunha;F. Alcantara https://doi.org/10.1007/s00248-001-0020-1
  5. Limnol. Oceanogr. v.30 Bacterivory by microheterotrophic flagellates in seawater samples Andersen, P;T. Fenchel https://doi.org/10.4319/lo.1985.30.1.0198
  6. Mar. Ecol. Prog. Ser. v.10 The ecological role of water-column microbes in the sea Azam, F.;T. Fenchel;J.G. Field;J.S. Gray;L.A. Meyer-Reil;F. Thingstad https://doi.org/10.3354/meps010257
  7. hydrobiologia v.207 Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environmental: bottom-up or top-down control? Billen, G.;P. Servais;S. Becquevort https://doi.org/10.1007/BF00041438
  8. Appl. Environ. Microbiol. v.58 Comparison of rates of flagellate bacterivory and bacterial production in a marine coastal system Barcina, I.;B.Ayo; M. Unanue;L. Egea;J. Iriberri
  9. Mar. Ecol. Prog. Ser. v.36 Cell volume to cell carbon conversion factors for a bacterivorus Monas sp. enriched from sea waters Bosheim, K.Y.;G. Bratbak https://doi.org/10.3354/meps036171
  10. Appl. Environ. Microbiol. v.4 Technique for enumeration of heterotrophic and phototrophic nanoplankton, use epifluorescence microscopy an comparison with other procedures Caron, D.A.
  11. Limnol. Oceanogr. v.44 Picoplankton and nanoplankton and their trophic coupling in surface waters of the Sargasso Sea south of Bermuda Caron, D.A.;E.R. Peele;E.L. Lim;M.R. Dennett https://doi.org/10.4319/lo.1999.44.2.0259
  12. J. of Kor. Soc. Oceanogr. v.27 Significance of estuarine mixing in distribution of bacterial abundance and production in the estuarine system of the Mankyung river and Dongjin river, Korea Cho, B.C.;J.H. Shim
  13. Mar. Ecol. Prog. Ser. v.115 Uncoupling of bacteria and phytoplankton during a spring diatom bloom in the mouth of the Yellow Sea Cho, B.C.;J.K. Choi;C.S. Chung;G.H.Hong https://doi.org/10.3354/meps115181
  14. J. of Kor. Soc. Oceanogr. v.23 The ecological study of phytoplankton in Kyeonggi Bay, Yellow sea.Ⅳ. The successional mechanism and th structure of the phytoplankton community of Kyeonggi Bay Choi, J.K.;J.H. Shim
  15. J. of Kor. Soc. Oceanogr. v.26 The study on the grazing rate of protozooplankton in the microbial food web of Inchon coastal waters Choi, J.K.;S.K. Kim;J.H. Noh;K.C. Park
  16. Mar. Ecol. Prog.Ser. v.43 Bacterial production in fresh and saltwater ecosystem: a cross-system overview Cole, J.J.;S, Findlay;M.L. Pace https://doi.org/10.3354/meps043001
  17. Mar. Ecol. Prog.Ser. v.21 Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal and diel distributions Davis, P.G.;D.A. Caron;P.W. Johnson;J.McN. Sieburth https://doi.org/10.3354/meps021015
  18. Limnol. Oceanogr. v.30 The growth of heterotrophic bacteria in the surface waters of warm core rings Ducklow, H.W.;S.M. Hill https://doi.org/10.4319/lo.1985.30.2.0239
  19. Adv. Microb. Ecol. v.22 Oceanic bacterial production Ducklow, H.W.;C.A. Carlson
  20. Micro. Ecol. v.31 Regulation of planktonic bacterial growth rates: the effects of temperature and resource Felip, M.;M.L. Pace;J.J. Cole
  21. Mar. Ecol. Prog. Ser. v.9 Ecology of heterotrophic microflagellates? Quantitative occurrence and importance as bacterial consumers Fenchel. T. https://doi.org/10.3354/meps009035
  22. A Rev. Syst. v.19 Marine plankton food chains Fenchel, T. https://doi.org/10.1146/annurev.es.19.110188.000315
  23. Limnol. Oceanogr. v.36 Weak coupling of bacterial algae production in a heterotrophic ecosystem: Hudson River estuary Findlay, S.;M.L. Pace;D. Lints;J.J. Cole;N.F. Caraco;B. Peierls https://doi.org/10.4319/lo.1991.36.2.0268
  24. Mar. Biol. v.66 Thymidine incorporation as a measure of heterotrophic bacterioplankton in marine surface waters: evaluation and field results Fuhrman, J.A.;F. Azam https://doi.org/10.1007/BF00397184
  25. Limnol. Oceanogr. v.40 Viruses and protists cause similar bacterial mortality in coastal seawater Fuhrman, J.A.;R.T. Noble https://doi.org/10.4319/lo.1995.40.7.1236
  26. J. Oceanogr. v.52 Distribution of heterotrophic nanoflagellates and their importance as the bacterial consumer in a eutrophic coastal seawater Fukami, K.;N. Murata;Y. Morio;T. Nishijima https://doi.org/10.1007/BF02239045
  27. J. Exp. Mar. Biol. Ecol. v.123 Abundance of autotrophic and heterotrophic nanoplankton and the size distribution of microbial biomass in the southwestern North Sea in October 1986 Geider, R.J. https://doi.org/10.1016/0022-0981(88)90165-7
  28. Mar. Ecol. Prog. Ser. v.100 Digestive enzyme activity as a quantitative measure of protistan grazing: the acid lysozyme assay for bacterivory Gonzalez, J.M.;B.F. Sherr;E.B. Sherr https://doi.org/10.3354/meps100197
  29. Aquat. Microb. Ecol. v.12 Regulation of annual variation in heterotrophic bacterial production in the Schelde estuary(SW Netherland) Goosen, N.K.;P. van Rijswijk;J. Kromkamp;J. Peene https://doi.org/10.3354/ame012223
  30. Mar. Ecol. Prog. Ser. v.49 Microbial loop in an oligotrophic pelagic marine ecosystem: possible roles of cyanobacteria and nanoflagellates in the organic fluxes Hagstrom, A.;F. Azam;A. Andersson;J. Wikner;F. Rassoulzadegan https://doi.org/10.3354/meps049171
  31. J. Plank. Res. v.15 The importance of phytoflagellate, heterotrophic flagellate and ciliate grazing on bacteria and picophytoplankton sized prey in a coastal marine environment Hall, J.A.;D.P. Barrett;M.R. James https://doi.org/10.1093/plankt/15.9.1075
  32. Mar. Ecol. Prog. Ser. v.98 Seasonal and inter-annual variability in bacterial production and biomass in a temperate estuary Hoch, M.P.;D.L. Kirchman https://doi.org/10.3354/meps098283
  33. Estu. Coast. Shelf Sci. v.48 Tidally induced changed in bacterial growth and viability in the Macrotidal Han River estuary, Yellow Sea Hyun, J.H.;J.K. Choi;K.H. Chung;E.J. Yang;M.K. Kim https://doi.org/10.1006/ecss.1998.0421
  34. Deep Sea Res. v.40 Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific Kirchman, D.L.;R.G. Keil;M. Simon;N.A. Welschmeyer https://doi.org/10.1016/0967-0637(93)90084-G
  35. Aquat. Microb. Ecol. v.15 Quantitative relationships between phytoplankton, bacteria and protists in an Aegean semi-enclosed embayment (Maliakos Gulf, Greece) Kormas, K.Ar.;K. Kapiris;M. Thessalou-Legaki;A. Nicolaidou https://doi.org/10.3354/ame015255
  36. Mar. Ecol. Prog. Ser. v.73 Picoplanktonic algae in the Northern baltic Sea: seasonal dynamics and flagellate grazing Kuosa, H. https://doi.org/10.3354/meps073269
  37. Polar biology v.12 Spatial distribution of bacterioplankton production across the Weddell-Scotia Confluence during early austral summer 1988-1989 Kuparinen, J.;P.K. Bjoernsen
  38. Aquat. Microb. Ecol. v.23 Bacterial abundance and production and heterotrophic nanoflagellate abundance in subarctic coastal waters (Western North Pacific Ocean) Lee, C.W.;I. Kudo;M. Yanada;Y. Maita https://doi.org/10.3354/ame023263
  39. Kieler Meeresforsch v.8 Seasonal distribution and character of heterotrophic marine bacteria in the intertidal zone of the Yellow sea near Kunsan, Korea Lee, G.H.;D.M. Lee
  40. Appl. Environ. Microbiol. v.53 relationship between biovolume and biomass of neutrally derived marine bacterioplankton Lee, S;J.A. Fuhrman
  41. J. Of Kor. Soc. Oceanogr. v.35 The roles of heterotrophic protists in the planktonic community of Kyeonggi Bay, Korea Lee, W.J.;J.K Choi
  42. Hydrobiologia v.159 Control of marine bacterioplankton populations: measurement and significance of grazing McManus, G.B.;J.A. Fuhrman https://doi.org/10.1007/BF00007367
  43. Aquat. Microb. Ecol. v.9 Seasonal variations of pico- and nano-detrial paricles (DAPI yellow particles, DYP) in the Ligurian Sea(NW Mediterranean) Mostajir, B.;J.R. Dolan;F. Rassoulzadegan https://doi.org/10.3354/ame009267
  44. J. Oceanogra. v.53 Abundance, production and viability of bacterioplankton in the Seto Island Sea, Japan Naganuma, T;S. Miura
  45. Limnol. Oceanogr. v.38 Bacterivory in algae: a survival strategy during nutrient limitation Nygaard, K.;A. Tobiesen https://doi.org/10.4319/lo.1993.38.2.0273
  46. Mar. Ecol. Prog. Ser. v.40 Evaluation of a fluorescent microsphere technique for measuring grazing rates of phagotrophic microorganisms Pace, M.L.;M.D. Bailiff https://doi.org/10.3354/meps040185
  47. Mar. Ecol. Prog. Ser. v.56 Relationship between bacteria, phytoplankton and particulate organic carbon in the upper St. Lawrence estuary Painchaud, J.;J.C. Therriault https://doi.org/10.3354/meps056301
  48. A manual of chemical and biological methods for seawater analysis Parsons, T.R.;Y. Maita;C.M. Lalli
  49. Continental Shelf Research v.7 Bacteria-particle interactions in tubid estuarine environments Plummer, D.H.;N.J.P. Owens;R.A. Herbert https://doi.org/10.1016/0278-4343(87)90050-1
  50. Science v.233 Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters Pomeroy, L.R.;D, Deibel https://doi.org/10.1126/science.233.4761.359
  51. Mar. Microb. Food webs. v.7 Energy sources for microbial food webs Pomeroy, L.R.;W.J. Wiebe
  52. Limnol. Oceanogr. v.25 The use of DAPI for identifying and counting aquatic microflora Porter, K.G.;Y.S. Feig https://doi.org/10.4319/lo.1980.25.5.0943
  53. Limnol. Oceanogr. v.37 Are rapid changes in bacterial biomass caused by shifts from top-down to bottom-up control? Psenner, R.;R. Sommaruga https://doi.org/10.4319/lo.1992.37.5.1092
  54. Estuarine Research. Vol.1., Chemistry, Biology and the Estuarine Systems The role of resuspended bottom mud in nutrient cycles of shallow embayments Rhoads, D.C.;K. Tenore;M. Browen;L.E. Cronin(ed)
  55. Aquatic Microbiology. 4th ed. Rheinheimer, G.
  56. Estuar. Coast. Shelf Sci. v.50 Bacterial and phytoplankton dynamics along a trophic gradient in a shallow temperate estuary Revilla, M.;A. Iriarte;I. Madariaga;E. Orive https://doi.org/10.1006/ecss.1999.0576
  57. Mar. Ecol. Pro. Ser. v.86 Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: and inter-ecosystem comparison Sanders, R.W.;D.A. Caron;U.G. Berninger https://doi.org/10.3354/meps086001
  58. Mar. Ecol. Prog. Ser. v.192 Heterotrophic and mixotrophic nanoplankton predation on picoplankton in the Sargasso Sea and on Georges Bank Sanders, R.W.;U.G. Berninger;E.L. Lim;P.F. Kemp;D.A. Caron https://doi.org/10.3354/meps192103
  59. Limnol. Oceanogr. v.22 Exceration of organic matter by marine phytoplankton: Do healthy cells do it? Sharp, J.H. https://doi.org/10.4319/lo.1977.22.3.0381
  60. Current perspectives in microbial ecology Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems Sherr, E.B.;B.F. Sherr;Klug, M.J(ed);C.A. Reddy(ed)
  61. Nature v.325 High rates of consumption of bacteria by pelagic ciliates Sherr, E.B.;B.F. Sherr https://doi.org/10.1038/325710a0
  62. Limnol. Oceanogr. v.33 Role of microbes in pelagic food webs: a revised concept Sherr, E.B.;B.F. Sherr https://doi.org/10.4319/lo.1988.33.5.1225
  63. Arch. Hydrobiol. Suppl. v.37 Trophic roles of pelagic protists: phagotrophic flagellates as herbivores Sherr, E.B.;B.F. Sherr
  64. Appl. Environ. Microbiol. v.53 Use of monodispersed, fluorescently-labeled bacteria to estimate in situ protozoan bacterivory Sherr, B.F.;E.B. Sherr;R.D. Fallon
  65. Mar. Ecol. Prog. Ser. v.54 Simultaneous measurement of bacterioplankton production and protozoan bacterivory in estuarine water Sherr, B.F.;E.B. Sherr;C. Pedros-Alio https://doi.org/10.3354/meps054209
  66. Limnol. Oceanogr. v.39 Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay Shiah, F.K.;H.W. Ducklow https://doi.org/10.4319/lo.1994.39.6.1243
  67. Mar. Ecol. Prog. Ser. v.103 Temperature and substrate regulation of bacterial abundance, production and specific growth rate in Chesapeake Bay, USA Shiah, F.K.;H.W. Ducklow https://doi.org/10.3354/meps103297
  68. Microb. Ecol. v.30 Regulation of bacterial abundance and production by substrate supply and bacterivory: A Mesocosm Study Shiah, F.K.;H.W. Ducklow
  69. J. Of Kor. Soc. Oceanogr. v.30 Abundance and bacterivory of heterotrophic and mixotrophic nanflagellates in an estuarine system of the Mankyung and Dongjin Rivers, Korea Shim, J.H.;S.H. Yoon;D.H. Choi;B.C. Cho
  70. J. Of Kor. Soc. Oceanogr. v.28 The roles and the inter-relationship between bacteria and phytoplankton in estuarine system of Mankyung and Dongjin Rivers, Korea Shim, J.H.;Y.K. Shini;B.C. Cho
  71. Mar. Ecol. Prog. Ser. v.86 Significance of bacterial biomass in lakes and the ocean: comparison to phytoplankton biomass and biogeochemical implications Simon, M.;B.C. Cho;F. Azam https://doi.org/10.3354/meps086103
  72. Microb. Ecol. v.28 The significance of viruses to mortality in aquatic microbial communities Suttle, C.A. https://doi.org/10.1007/BF00166813
  73. Mar. Ecol. Prog. Ser. v.179 Predator-prey eddy in heterotrophic nanoflagellate-bacteria relationships in a bay on the northeastern Pacific coast of Japan Tanaka, T.;A. Taniguchi https://doi.org/10.3354/meps179123
  74. Microb. Ecol. v.13 Predator-prey eddy in heterotrophic nanoflagellate-bacteria relationships in a coastal marine environment: a new scheme for predator-prey associations Tanaka, T.;N. Fujita;A. Taniguchi https://doi.org/10.3354/ame013249
  75. Mar. Ecol. Prog. Ser. v.92 Uptake and utilization of colloidal DOM by heterotrophic flagellates in seawater Tranvik, L.J.;E.B. Sherr;B.F. Sherr https://doi.org/10.3354/meps092301
  76. Mar. Ecol. Prog. Ser. v.62 Sediment-to-water fluxes of particulate material and microbes by resuspension and their contribution to the planktonic food web Wainright, S.C. https://doi.org/10.3354/meps062271
  77. Aquat. Microb. Ecol. v.18 Abundance, biomass and growth rates of pelagic microorganisms in a tropical coastal ecosystem Wallberg, P.;Per R. Jonsson;R. Johnstone https://doi.org/10.3354/ame018175
  78. Aquat. Microb. Ecol. v.17 Low control of bacterial production by heterotrophic nanoflagellates in a eutrophic backwater environmental Wieltschnig, C.;P. Wihlidal;T. Ylbricht;A.K.T.Kirschner;B. Velimirov https://doi.org/10.3354/ame017077
  79. Limnol. Oceanogr. v.35 Periodic bacterivory activity balances bacterial growth in the marine environment Wikner, J.;F. Rassoulzadegan;A. Hagstrom https://doi.org/10.4319/lo.1990.35.2.0313
  80. Current perspectives in microbial ecology Factors affecting bacterioplankton density and productivity in salt marsh estuaries Wright, R.T.;R.B. Coffin;Klug MJ(ed);Reddy CA(ed)
  81. Microb. Ecol. v.10 Measuring microzooplankton grazing on planktonic marine bacteria by its impact on bacteria production Wright R.T.;R.B. Coffin https://doi.org/10.1007/BF02011421
  82. Microb. Ecol. v.21 The effects of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats White, P.A.;J. Kalff;J.B. Rasmussen;J.M. Gasol https://doi.org/10.1007/BF02539147
  83. Estu. Coast. and Shelf Sci. v.48 Factors controlling accumulation of labile dissolved organic carbon in the Gulf of Riga Zweifel, U.L. https://doi.org/10.1006/ecss.1998.0428