• Title/Summary/Keyword: Heterotorphic nanoflagellates(HNF)

Search Result 1, Processing Time 0.015 seconds

The Study on the Seasonal Variation of Microbial Community in Kyeonggi Bay, Korea 1. Bacteria and Heterotrophic nanoflagellates (경기만 수역에서 미세생물 군집의 계절적 변동 연구 I. 박테리아와 종속영양 미소 편모류)

  • 양은진;최중기;현정호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.1
    • /
    • pp.44-57
    • /
    • 2003
  • Seasonal variations of bacterial abundance and production, heterotrophic nanoflagellate (HNF) abundance and HNF ingestion rates on bacteria using FLB together with environmental variables were investigated at intervals of a month in Kyeonggi Bay from December 1991 to November 1998. Bacterial abundance and production ranged from 0.38$\times$10$^{9}$ ~ 3.25$\times$10$^{9}$ cells 1$^{-1}$ (average 1.19$\pm$0.69$\times$10$^{9}$ cells 1$^{-1}$ ) and from 1.51 to 20.4 cells 1$^{-1}$ h$^{-1}$ (average 6.04$\pm$ 1.88$\times$10$^{6}$ cells 1$^{-1}$ h$^{-1}$ ), respectively. Bacterial abundance and production showed no differences at the high tide and low tide, and bacterial abundances were not different with depth, but bacterial production decreased with depth. Seasonal variation of bacterial abundance showed almost similar fluctuation pattern to those of DOC (dissolved organic carbon). HNF abundances ranged from 388 to 4,374 cells ml$^{-1}$ (average 1,344$\pm$130 cells ml$^{-1}$ ), were high in March, April, July and August. HNF abundance showed no difference between the high tide and low tide, and was not different with depth. The ingestion rates of HNF on bacteria were 1.0 to 6.3$\pm$10$^{6}$ bacteria 1$^{-1}$ h$^{-1}$ (average 3.12$\pm$0.55$\times$10$^{6}$ bacteria 1$^{-1}$ h$^{-1}$ ), resulting ingestion rates of HNF removed 19.4 to 141.4 %(average 62.3$\pm$12.0%) of bacterial production. Ingestion rates and grazing pressure of HNF on bacteria showed high correlation with HNF abundance. Although we cannot exactly discussion about seasonal variation of bacteria community in this study area where physical and chemical parameters were very complex, the results indicate that bacterial abundance and production were mainly controlled by resources supply as dissolved organic carbon and chlorophyll-a(bottom-up) except March which bacterial abundance and production uncoupled chlorophyll-a because of low dissolved organic carbon and low temperature, and were controlled by HNF grazing pressure(top-down) in the warm seasons except the winter.