DOI QR코드

DOI QR Code

Effect of the Sintering Temperature on Electrical Properties of Porous Barium-strontium Titanate Ceramics

  • Kim, Jun-Gyu (Institute of Advanced Materials, Inha University) ;
  • Sim, Jae-Hwang (School of Materials Science and Engineering, Inha University) ;
  • Cho, Won-Seung (School of Materials Science and Engineering, Inha University)
  • 발행 : 2003.01.01

초록

Porous barium-strontium titanate ceramics were fabricated by adding corn- or potato-starch (are referred to as starch). The effect of sintering temperature on the microstructure and electrical properties of the porous ceramics was investigated. The room-temperature electrical resistivity of the barium-strontium titanate ceramics decreased with sintering temperature. The porosity and pore size were decreased and the grain size was increased with increasing the sintering temperature. The porosity and grain size of the barium-strontium titanate ceramics with corn-starch sintered at 1300 and 1450$^{\circ}C$ were 28.5, 22.6% and 3.2, 6.2 $\mu\textrm{m}$, respectively. The average pore sizes of the barium-strontium titanate ceramics with corn-starch sintered at 1300, 1400 and 1450$^{\circ}C$ were 0.5, 0.3 and 0.2 $\mu\textrm{m}$, respectively. The decrease in the room-temperature resistivity with increasing sintering temperature is attributed mainly due to the increase of grain size and the decrease of the electrical barrier height of grain boundaries as well as the partial decrease of porosity.

키워드

참고문헌

  1. J. Am. Ceram. Soc. v.76 no.8 Positive Temperature Coefficient Resistivity in$Ba_{1-x}Sr_xPb_{1+x}O_{3-\delta}$ Ceramics H. Nagamoto;H. Kagotani;T. Okubo https://doi.org/10.1111/j.1151-2916.1993.tb08332.x
  2. J. Ceram. Soc. Jpn. v.100 no.4 Sintering and Dielectrics Properties of BaTiO₃-Ni Composite Ceramics H. Emoto;J. Hojo https://doi.org/10.2109/jcersj.100.555
  3. J. Am. Ceram. Soc. v.77 no.3 Semiconducting Barium Titanate Ceramics Prepared by Boron-containing Liquid-phase Sintering I. C. Ho https://doi.org/10.1111/j.1151-2916.1994.tb05372.x
  4. J. Am. Ceram. Soc. v.76 no.9 Influence of Potassium on Preparation and Performance of PTC Resistors I. C. Ho;H. L. Hsieh https://doi.org/10.1111/j.1151-2916.1993.tb07784.x
  5. J. Am. Ceram. Soc. v.76 no.4 Effect of Sintering Aids on Microstructures and PTCR Characteristic of $(Sr_{0.2}Ba_{0.8})TiO_3$ Ceramics H. F. Cheng;T. F. Lin;C. T. Hu https://doi.org/10.1111/j.1151-2916.1993.tb05302.x
  6. J. Am. Ceram. Soc. v.78 no.12 Characterization of the Firing Schedule for Positive Temperature Coefficient of Resistance BaTiO₃ B. C. Lacourse;V. R. W. Amarakoon https://doi.org/10.1111/j.1151-2916.1995.tb07976.x
  7. J. Am. Ceram. Soc. v.44 no.2 Semiconducting Bodies in the Family of Barium Titanates O. Saburi https://doi.org/10.1111/j.1151-2916.1961.tb15350.x
  8. J. Mater. Sci. v.6 Semiconducting Barium Titanate W. Heywang https://doi.org/10.1007/BF00550094
  9. Solid State Electron. v.7 Some Aspects of Semiconducting Barium Titanate G. H. Jonker https://doi.org/10.1016/0038-1101(64)90068-1
  10. Philips Tech. Rev. v.38 no.3 The PTC Effect of Barium Titanate J. Daniels;K. H. Hardtl;R. Wernike
  11. J. Am. Ceram. Soc. v.47 no.10 Resistivity Anomaly in Doped Barium Titanate W. Heywang https://doi.org/10.1111/j.1151-2916.1964.tb13795.x
  12. J. Kor. Ceram. Soc. v.38 no.7 Determination of Potential Barrier Heights at the Grain Boundaries of PTC Ceramics Y. G. Li;S. G. Cho
  13. J. Kor. Ceram. Soc. v.39 no.7 Formation Rate of Tetragonal $BaTiO_3$ Powder by Hydrothermal Synthesis and its Dielectric Property J.-H. Lee;Y.-K. Choi;C. W. Won;C. S. Kim https://doi.org/10.4191/KCERS.2002.39.7.628
  14. J. Kor. Ceram. Soc. v.39 no.7 Preparation of Nano-size $BaTiO_3$ Powder Using Glycothermal Method B. K. Kim;D. Y. Lim;J. S. No;S. B. Cho https://doi.org/10.4191/KCERS.2002.39.7.642
  15. Am. Ceram. Soc. Bull. v.72 no.2 PTC Thermistors J. G. Fagan;V. R. W. Amarakoon
  16. J. Am. Ceram. Soc v.48 Factors and Mechanisms Affecting the Positive Temperature Coefficient of Resistivity of Barium J. B. Macchesney;J. F. Potter https://doi.org/10.1111/j.1151-2916.1965.tb11804.x
  17. J. Am. Ceram. Soc. v.64 no.11 Effect of Microstructure on the PTCR Effect in Semiconducting Barium Titanate Ceramics M. Kuwabara https://doi.org/10.1111/j.1151-2916.1981.tb15861.x
  18. J. Am. Ceram. Soc. v.64 no.12 Influence of Stoichiometry on the PTCR Effect in Porous Barium Titanate Ceramics M. Kuwabara
  19. J. Am. Ceram. Soc. v.77 no.8 Preparation of Porous $BaTiO_3$ PTC Thermistors by Adding Graphite Porosifiers S.-M. Su;L.-Y. Zhang;H.-T. Sun;X. Yao https://doi.org/10.1111/j.1151-2916.1994.tb07111.x
  20. J. Mater. Sci. v.26 Composite PTCR Thermistors Utilizing Conducting Borides, Silicides and Carbide Powders T. R. Shrout;D. Moffatt;W. Huebner https://doi.org/10.1007/BF00576045
  21. Mater. Sci. Eng. B v.77 no.3 PTCR Characteristics in Porous $(Ba,Sr)TiO_3$ Ceramics Produced by Adding Partially Oxidized Ti Powders J.-G. Kim;W.-S. Cho;K. Park https://doi.org/10.1016/S0921-5107(00)00496-7
  22. J. Ceram. Soc. Jpn. v.98 no.8 Influence of Reoxidation on PTC Effect of Porous $BaTiO_3$ T. Takahashi;Y. Nakano;N. Ichinose https://doi.org/10.2109/jcersj.98.879
  23. Sol. State Elect. v.27 no.11 Determination of the Potential Barrier Height in Barium Titanate Ceramics M. Kuwabara https://doi.org/10.1016/0038-1101(84)90064-9
  24. J. Appl. Phys. v.50 no.6 Capacitance-vs-voltage Characteristics of ZnO Varistors K. Mukae;K. Tsuda;I. Nagasawa https://doi.org/10.1063/1.326411
  25. J. Am. Ceram. Soc. v.76 no.3 Humidity Response Characteristics of Barium Titanate T. J. Hwang;G. M. Choi https://doi.org/10.1111/j.1151-2916.1993.tb03675.x
  26. J. Mater. Sci. Lett. v.17 Influence of Doping on Humidity Sensing Properties of Nanocrystalline $BaTiO_3$ J. Wang;B. Xu;G. Liu;Y. Liu;F. Wu;X. Li;M. Zhao https://doi.org/10.1023/A:1006611211327
  27. J. Mater Sci. Lett. v.18 Effect of Humidity on the Electrical Response of Porous $BaTiO_3$ Ceramics A. C. Caballero;M. Villegas;J. F. Fernandez;M. Viviani;M. T. Buscaglia;M. Leoni https://doi.org/10.1023/A:1006662805186