Abstract
Various methods have been studying to maintain and apply the multimedia inform abruptly increasing over all social fields, in recent years. For retrieval of still images, we is implemented content-based image retrieval system in this paper that make possible to retrieve similar objects from image database after segmenting query object from background if user request query. Query image is processed median filtering to remove noise first and then object edge is detected it by canny edge detection. And query object is segmented from background by using convex hull. Similarity value can be obtained by means of histogram intersection with database image after securing color histogram from segmented image. Also segmented image is processed gray convert and wavelet transform to extract spacial gray distribution and texture feature. After that, Similarity value can be obtained by means of banded autocorrelogram and energy. Final similar image can be retrieved by adding upper similarity values that it make possible to not only robust in background but also better correct object retrieval by using object segmentation method.
현재 사회전반에 걸쳐 급격히 증가하고 있는 멀티미디어 정보를 효율적으로 관리, 활용할 수 있는 방법이 다양하게 연구되고 있다. 본 논문에서는 정지영상 검색을 위해 사용자가 질의(query)를 요구하면 질의 물체를 배경으로부터 분할한 후 유사물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상이 들어오면 우선 메디안 필터링 처리를 하여 잡음 제거한 후 캐니 에지 탐지법으로 물체의 에지를 구한다. 그리고 볼록 다각형 기법을 이용하여 배경으로부터 질의물체를 분할한다. 분할된 영상으로부터 컬러 히스토그램을 구한 후 데이터 베이스내의 영상과 히스토그램 인터섹션을 하여 유사치를 구한다 또한 공간적 그레이 분포와 질감특성을 추출하기 위해 분할된 영상을 그레이 영상으로도 변환시켜 웨블릿 변환한 후 밴디드 오토코릴로그램과 에너지를 구해 유사치를 구한다. 이렇게 구한 유사치을 더해 최종 유사영상을 검색하는데 물체 분할기법을 사용함으로써 배경에 강인할 뿐 아니라 보다 정확한 물체 검색이 가능하였다.