Cure Properties in Photopolymer for Stereolithography according to Variance of Laser Beam Size

레이저빔 크기변화에 따른 광조형수지의 경화특성

  • 이은덕 (부산대학교 대학원) ;
  • 심재형 (부산대학교 대학원) ;
  • 백인환 (부산대학교 기계공학부, 기계기술연구소)
  • Published : 2003.02.01

Abstract

Stereolithography is the technique using a laser beam to cure a liquid resin, a photopolymer, with three dimensional computer-aided design (CAD) data. The build parameters of stereolithography such as beam size, scan velocity. hatch spacing, layer thickness and etc. are determined by the accuracy of prototype, the build time and the cured properties of the resin. In particular, beam size is important processing parameter fur the other parameters. Therefore, this study observed the cured property to beam size. For this purpose, according to hatch spacing and beam size, the cure width and depth were measured on single cured line. Also, the cure width and depth were measured at single cured layer As a result of experiments. cure depth which varied from 0.23mm to 0.34mm was directly proportioned to beam radius. on the other hand, cure width which varied from 0.42mm to 1.07mm was inversely proportioned to beam radius. Surface roughness varied from 1.12 to 2.23 m for the ratio of hatch spacing to beam radius.

Keywords

References

  1. 이상호, 안동규, 양동열, 'VLM-S용 선형열선절단기의 회전각 계산,' 한국정밀공학회지, 제19권, 제2호, pp. 87-94,2002
  2. 이상호, 김태화, 안동규, 양동열, 채희창, '가변 적층 쾌속 조형 공정 개발을 위한 단위형상조각 자동생성 소프트웨어 개발 및 적용 예,' 한국정밀공학회지, 제18 권, 제 8 호, pp. 64-70, 2001
  3. 이관행, 손석배, 박현풍, '쾌속 제품 개발을 위한 측정 시스템,' 한국정밀공학회지, 제17권, 제10호, pp. 26-34, 2000
  4. 신보성, 양동열, 최두선, 이응숙, 황경현, '자동 충진 공정을 이용한 쾌속 제작 공정 개발,' 한국정밀공학회지, 제18권, 제7호, pp. 174-178, 2001
  5. G. Zak, 'Mechanical properties of short-fibre layered composites : prediction and experiment,' Rapid Prototyping Journal, Vol. 6, No. 2, pp. 107-118, 2000 https://doi.org/10.1108/13552540010323583
  6. Li,Y., Li.D. and Lu.B, 'Introduction to stereolithography and its application,' Journal of Applied Optic, Vol. 9, No. 3, pp. 34-36, 1999
  7. J.S. Ullett, 'Novel liquid crystal resins for stereolithography - processing parameters and mechanical analysis,' Rapid Prototyping Journal, Vol. 6, No. l,pp. 8-17, 2000 https://doi.org/10.1108/13552540010309840
  8. Y.Yang, 'Equidistant path generation for improving scanning efficiency in layered manufacturing,' Rapid Prototyping Journal, Vol. 8, No. 1, pp. 30-37, 2002 https://doi.org/10.1108/13552540210413284
  9. Alok Kataria, 'Building around inserts: methods for fabricating complex devices in stereolithography,' Rapid Prototyping Journal, Vol. 7, No. 5, pp. 253-262, 2001 https://doi.org/10.1108/13552540110410459
  10. 金炳泰, 'laser工學,' 尙學堂, pp. 248-252, 2001
  11. Paul F. Jacobs, 'Rapid prototyping & Manufacturing,' SME, pp. 71-76, 1993
  12. D T Pham, 'Design for stereolithography,' Proc Instn Mech Engrs, Vol. 214, Part C, pp. 635-640, 2000 https://doi.org/10.1243/0954406001523650
  13. 中川威雄. 丸谷洋二, '積層造形ッステム :次元コピ技術の新展開,' 日本工業調査會, pp. 38-57, 1998
  14. Anna Kochan, 'Rapid prototyping gains speed, volume and precision,' Assembly Automation, Vol. 20, No. 4, pp. 295-299, 2000 https://doi.org/10.1108/01445150010378425
  15. Regina Knitter, 'RP process chains for ceramic microcomponents,' Rapid Prototyping Journal, Vol. 8, No. 2, pp. 76-82, 2002 https://doi.org/10.1108/13552540210420943