A GA-Based IMM Method for Tracking a Maneuvering Target

기동표적 추적을 위한 유전 알고리즘 기반 상호작용 다중모델 기법

  • 이범직 (연세대학교 전기전자공학과) ;
  • 주영훈 (군산대학교 전자정보공학부) ;
  • 박진배 (연세대학교 전기전자공학과)
  • Published : 2003.01.01

Abstract

The accuracy in maneuvering target tracking using multiple models is resulted in by the suitability of each target motion model to be used. The interacting multiple model (IMM) method and the adaptive IMM (AIMM) method require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems, a genetic algorithm(GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to calculate the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulation.

Keywords

References

  1. R. A. Singer, 'Estimating optimal tracking filter performance for manned maneuvering targets,' IEEE Trans. Aerosp. Electron. Syst., Vol. AES-6, No. 4, pp. 473-483, July, 1969 https://doi.org/10.1109/TAES.1970.310128
  2. P. L. Bogler, 'Tracking a maneuvering target using input estimation,' IEEE Trans. Aerosp. Electron. Syst., Vol. AES-23, No. 3, pp. 298-310, May, 1987 https://doi.org/10.1109/TAES.1987.310826
  3. Y. Bar-Shalom and K. Birmiwal, 'Variable dimension filter for maneuvering target tracking,' IEEE Trans. Aerosp. Electron. Syst., Vol. AES-18, No. 5, pp. 621-629, September, 1982 https://doi.org/10.1109/TAES.1982.309274
  4. J. K. Tugnait, 'Detection and estimation for abruptly changing systems,' Automatica, Vol. 18, No. 5, pp. 607-615, 1982 https://doi.org/10.1016/0005-1098(82)90012-7
  5. H. A. P. Blom and Y. Bar-Shalom, 'The interacting mutiple model algorithm for systems with a jumplinear smoothing application,' IEEE Trans. Automat. Contr., Vol. AC-33, No. 8, pp. 780-783, August, 1988 https://doi.org/10.1109/9.1299
  6. A. Munir and D. P. Atherton, 'Adaptive interacting multiple moldel algorithm for tracking a maneuvering target,' IEE Proc. of Radar, Sonar Navigation, Vol. 142, No. 1, pp. 11-17, 1995 https://doi.org/10.1049/ip-rsn:19951528
  7. A. T. Alouani, A. T. Xia, P. Price, and W. D. Blair, 'A two-stage Kalman estimator for state estimation in the presence of random bias for tracking maneuvering targets,' Processings of 30th IEEE Conference on Decision and Control, pp. 2059-2062, December, 1991 https://doi.org/10.1109/CDC.1991.261781
  8. Y. Bar-Shalom and X. Li, Estimation and Tracking ; Principles, Techniques and Software, Norwood, MA : Arteck House, 1993
  9. D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning, Addison-wesley publishing company, inc., 1989
  10. Y. H. Joo, H. S. Hwang, K. B. Kim, and K. B. Woo, 'Linguistic model identification for fuzzy system,' Electron. Letter, Vol. 31, pp. 330-331, 1995 https://doi.org/10.1049/el:19950163
  11. Y. H. Joo, H. S. Hwang, K. B. Kim, and K. B. Woo, 'Fuzzy system modeling by fuzzy partition and GA hybrid schemes,' Fuzzy set and systems, Vol. 86, pp. 279-288, 1997 https://doi.org/10.1016/S0165-0114(95)00414-9