Smith-Predictor Controller Design Using New Reduction Model

새로운 축소 모델을 이용한 Smith-Predictor 제어기 설계

  • 최정내 (원광대 공대 전자공학과) ;
  • 조준호 (원광대 공대 제어계측공학과) ;
  • 황형수 (원광대 공대 전기전자공학부)
  • Published : 2003.01.01

Abstract

To improve the performance of PID controller of high order systems by model reduction, we proposed two model reduction methods. One, Original model with two point $({\angle}G(jw)=\;-{\pi}/2,\;-{\pi})$ in Nyquist curve used gradient base method and genetic algorithm. The other, Original model without two point$({\angle}G(jw)=\;-{\pi}/2,\;-{\pi})$in Nyquist curve used to add very small dead time. This method has annexed very small dead time on the base model for reduction, and we remove it after getting the reduced model, and , we improved Smith-predictor for a dead-time compensator using genetic algorithms. This method considered four points$({\angle}G(jw)=0,\;-\pi/2,\;-\pi,\;-3\pi/2)$ in the Nyquist curve to reduce steady state error between original and reduced model. It is shown that the proposed methods have more performance than the conventional method.

Keywords

References

  1. K.J.Astrom and T.Hagglund, 'Automatic tuning of simple regulators with specifications on phase and amplitude margins', Automatica, vol. 20, no. , pp. 645-651,1984 https://doi.org/10.1016/0005-1098(84)90014-1
  2. W.K.Ho, C.C.Hang, W.Wojsznis, and Q.H.Tao, 'Frequency domain approach to self-tuning PIDcontrol', contr.Eng. Practice, vol. 4, no.6, pp.807-813, 1996 https://doi.org/10.1016/0967-0661(96)00071-8
  3. W.K.Ho, O.P.Gan, E.B.Tay, and E.L.Ang, 'Performance and gain and phase margins of well-known PID tuning formulas', IEEE Trans. Contr. Syst. Technol., vol. 4, pp. 473-477, 1996 https://doi.org/10.1109/87.508897
  4. M.Zhuang and D.P.Atherton, 'Automatic tuning of optimum PID controllers', Proc. Inst. Elect. Eng., vol. 140, pt. D, no. 3, pp. 216-224, May 1993
  5. M.K.Ho, C.C.Hang, and L.S.Cao, 'Tuning of PID controllers based on gain and phase margin specifications', Automatica, vol. 31, no. 3, pp. 497-502, 1995 https://doi.org/10.1016/0005-1098(94)00130-B
  6. K.Y.Kong, S.C.Goh, C.Y.Ng, H.K.Loo, K.L.Ng, W.L.Cheong, and S.E.Ng, 'Feasibility report on frequency domain adaptive controller', Dept. Elect. Eng., Nat. Univ. Singapore, Internal Rap., 1995
  7. Q.G.Wang, T.H.Lee, H.W.Fung, Q.Bi and Y. Zhang, 'PID tuning for Improved performance', IEEE Trans. Control System. Technol., vol. 7, no.4, pp. 457-465, July 1999 https://doi.org/10.1109/87.772161
  8. Y.Shamash, 'Model reduction using the Routh stability criterion and the Pade approximation technique', Int. J. Control, vol. 21, No. 3, pp. 475-484, 1975 https://doi.org/10.1080/00207177508922004
  9. J. J. Grefenstette, 'Optimizaion of control parameters for genetic algorithms', IEEE Trans. System, Man, and Cybernetics, Vol. 1, pp. 122-128, 1986 https://doi.org/10.1109/TSMC.1986.289288
  10. k. k. Tan et al., 'New Approach For Design and Automatic Tuning of the Smith Predictor Controller', Ind. Eng. Ghem. Res., VOL. 38, pp.3438-3445,1999 https://doi.org/10.1021/ie990059i
  11. Ind. Eng. Ghem. Res. v.38 New Approach For Design and Automatic Tuning of the Smith Predictor Controller k. k. Tan(et al.) https://doi.org/10.1021/ie990059i