DOI QR코드

DOI QR Code

Nutrients Removal Efficiency by Vegetation Density on Constructed Wetland from Small Watershed

소수계 유역 인공습지에서 식생 밀도 차이에 다른 영양염류 제거효율

  • Ko, Jee-Yeon (National Yeongnam Agricultural Experiment station) ;
  • Kang, Hang-Won (National Yeongnam Agricultural Experiment station) ;
  • Lee, Jae-Sang (National Yeongnam Agricultural Experiment station) ;
  • Kim, Chun-Song (National Yeongnam Agricultural Experiment station) ;
  • Sakadevan, K. (School of Science, Food and Horticulture, University of Western Sydney) ;
  • Bavor, H.J. (National Yeongnam Agricultural Experiment station)
  • 고지연 (영남농업시험장 식물환경과) ;
  • 강항원 (영남농업시험장 식물환경과) ;
  • 이재생 (영남농업시험장 식물환경과) ;
  • 김춘송 (영남농업시험장 식물환경과) ;
  • ;
  • Published : 2003.12.31

Abstract

This study was conducted to evaluate effects of 2 constructed wetlands with different vegetation states (plumpton park wetland and Woodcroft park wetland) for reducing non-point source pollution from small watershed consisted of residential and agricultural area in suburban district of Sydney, Australia. The total nitrogen and phosphate removal efficiency of Plumpton park constructed wetland, composed of stable and dense vegetation, were 38.3% and 26.2% and Woodcroft park constructed wetland having still poor vegetation due to the short time to settle down transplanted plants after construction, showed relatively low removal efficiency of 20.2% and 14.0%. The removal efficiency of inorganic nutrients such as $NH_4-N$, $NO_3-N$, $PO_4^{-3}$ were higher than total nitrogen and phosphate because plants and microorganisms in rhizosphere of constructed wetlands took up inorganic nutrients shortly. According to the type of wetland inflow, the nutrients removal efficiency of storm water flow was lower than base flow.

호주 시드니 인근 도 농 복합 소도시로부터 발생하는 비점오염원을 처리하기 위하여 설치된 Plumpton park와 Woodcroft park 인공습지의 처리효율을 살펴본 결과, 수생식물의 밀도가 증가하고 식생이 안정된 Plumpton Park 인공습지에서 T-P의 26.2%, T-N의 38.3%, 식생분포가 안정적이지 않은 Woodcroft park에서 14.0%와 20.2%가 각각 제거됨으로서 인공습지에서 식물체와 식물체 근권 미생물에 의한 T-P 및 T-N의 제거 효율이 상당히 큼을 알 수 있었다. 또한 T-N와 T-P에 비하여 $NH_4-N$, $NO_3-N$, $PO_4^{-3}$의 제거율이 높았던 것은 무기태 형태의 영양염류가 식물 및 미생물에 더 쉽게 이용되었기 때문으로 생각된다. 이상의 결과로 볼 때 인공습지에서 식물체와 근권 주위 미생물에 의한 염류제거는 인공습지가 설치한지 오래되었을 때도 효과적이었고, 또한 인공습지는 무기태 영양염류의 제거효율이 더욱 높았으므로 무기화학비료 등의 용탈이 일어나기 쉬운 농경지 비점오염원으로 부터 발생하는 수질오염의 개선에 이용할 수 있는 경제적이고도 효율적인 system으로 고려되었다.

Keywords

References

  1. Reddy, K. R. and Smith, W. H. (1987) Aquatic plants for water treatment and resource recovery, Magnolia pub. Orlando, Florida
  2. Hammer, D. A. and Bastian, R. K. (1989) Wetland ecosystem natural water purifier? In: Hammer, D. A. (Ed), Constructed wetlands for Wastewater Treatment : Municipal, Industrial and Agricultural, Lewis Publ. Michigan, p.5-19
  3. Bavor, H. J. and Mitchell, D. S. (1994) Wetland system in water pollution control, Wat. Sci. Tech. 29(4)
  4. De laney, T. (1995) Benefita to downstream flood attenuation and water quality as a result of constructed wetlands in agricultural landscape, J. Soil Wat. Conse. 50, 620-626
  5. U.S. Environmental Protection Agengy (1988) Design manual for constructed wetlands and floating aquatic plant systems for municipal wastewater treatment, EPA 625/1-88-022, U.S. EPA, Cincinati, OH
  6. Sakadevan, K. and Bavor. H. J. (1999) Nutrient removal mechanisms in constructed wetlands and sustainable water management, Wat. Sci. Tech. 40(2), 121-128 https://doi.org/10.1016/S0273-1223(99)00478-3
  7. Faulkner, S. P. (1989) Physical and chemical characteristics of freshwater wetland soil. In: Constructed wetland in waste water treatment :41-72
  8. Yoon, C. G., Kwun, S. K. and Kim, H. J. (1997) Change of nutrients and behavior of total coliforms in the natural treatment of wastewater by subsurface flow wetland system, 16(3), 249-254
  9. Ham, J. H. and Yoon, C. K. (2003) Feasibility study of constructed wetland system for sewage treatment in rural area, Korean J. Environ. Agric. 19(5), 426-432
  10. Kwon, S. K., Yoon, C. G., Lim, Y. H., Kim, J. S., Hong, S. G., Jung, H C., Cha, G. C., Park, B. H. and Shin, D. S.(2001) Development of integrated water quality management system in rural river Basins, Ministry of Agricultural and Forest, p.462
  11. Yoon, C. G., Kwun, S. K. and Ham, J. H. (1999) Wetland performance for wastewater treatment in growing and winter seasons, Korean J. Environ. Agric. 41(5), 96-105
  12. Bavor, H. J. and Davies, C. M. and Sakadevan, K. (2001) Stormwater treatment: do constructed wetlands yield improved pollutant management performance over a detention pond system?, Wat. Sci. Tech. 44(11-12), 565-570
  13. Standard methods for the examination of water and wastewater 1998. 20th edn American Public Health Association/American Water works Association/Water environment Federation, Washington DC, USA
  14. Soukup, A., Williams, R. J., Cattell F. C. R. Krogh (1994) Function of a coastal wetland as an efficeient remover of nutrients from seawage effluent : a case study. In: Bavor, H. J. and D. Mitchell(Eds.) Water Science and Technology. Wetland System in Water Pollution Control, 29(4), 295-304
  15. Patruno, J. and Russell, J. (1994) Natural Wetland polishing effluent discharging effluent to Wooloweyah lagoon. In: Bavor, H. J. and Mitchell(Eds.) Water Science and Technology. Wetland System in Water Pollution Control, 29(4), 185-192
  16. Bavor, H. J. and Andel, E. F.(1994) Nutrient removal and disinfection performance in the Byron Bay Constructed wetland Systerm, Wat. Sci. Tech. 29(4), 201-208
  17. Adcock, P. W., Ryan, G. L. and Osborne, P. L. (1995) Nutrient partitioning in a clay-based surface flow wetland, Wat. Sci. Tech. 32(3), 203-209 https://doi.org/10.1016/0273-1223(95)00621-4