References
- Angkanaporn, K., M. Choct, W. L. Bryden, E. F. Annison and G. Annison. 1994. Effects of wheat pentosans on endogenous amino acid losses in chickens. J. Sci. Food Agric. 66:399-404. https://doi.org/10.1002/jsfa.2740660319
- Barth, C. A., B. Lunding, M. Schmitz and H. Hagemeister. 1993. Soybean trypsin inhibitor(s) reduce absorption of exogenous and increase loss of endogenous protein in miniature pigs. J. Nutr. 123:2195-2200.
- Bedford, M. R. and H. Schulz. 1998. Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 11:91-114. https://doi.org/10.1079/NRR19980007
- Bedford, M. R., T. A. Scott, F. G. Silversides, H. L. Classen, M. L. Swift and M. Pack. 1998. The effect of wheat cultivar, growing environment, and enzyme supplementation on digestibility of amino acids by broilers. Can. J. Anim. Sci. 78:335-342. https://doi.org/10.4141/A98-012
- Caine, W. R., W. C. Sauer, W. A. Verstegen, S. Tamminga, S. Li and H. Schulze 1998. Guanidated protein test meals with higher concentration of soybean trypsin inhibitors increase ileal recoveries of endogenous amino acids in pigs. J. Nutr. 128:598-605. https://doi.org/10.1093/jn/128.3.598
- Caldwell, R. A. 1992. Effect of calcium and phytic acid on the activation of trypsinogen and the stability of trypsin. J. Agric. Food Chem. 40:43-46. https://doi.org/10.1021/jf00013a008
- Camden, B. J., P. H. C. Morel, D. V. Thomas V. Ravindran and M. R. Bedford. 2001. Effectiveness of exogenous microbial phytase in improving the bioavailabilities of phosphorus and other nutrients in maize-soya-bean meal diets for broilers. Anim. Sci. 73:289-297. https://doi.org/10.1017/S1357729800058264
- Choct, M., R. J. Hughes, R. P. Trimble, K. Angkanaporn and G. Annison. 1995. Non-starch polysaccharide-degrading enzymes increase the performance of broiler chickens fed wheat of low metabolisable energy. J. Nutr. 125:485-492.
- Choct, M. 1998. The effect of different xylanases on carbohydrate digestion and viscosity along the intestinal tract in broilers. In: Proceedings of the Australian Poultry Science Symposium. Vol. 10:111-115.
- Farrell, D. J. and E. Martin. 1998. Strategies to improve the nutritive value of rice bran in poultry diets. III. The addition of inorganic P and a phytase to duck diets. Brit. Poult. Sci. 39:601-611. https://doi.org/10.1080/00071669888467
- Frolich, W., T. F. Schweizer and N-G Asp. 1984. Minerals and phytate in the analysis of dietary fiber from cereals. II. Cereal Chem. 61:357-359.
- Frolich, W. 1990. Chelating properties of dietary fiber and phytate. The role for mineral availability. In: New Developments in Dietary Fiber (Ed. I. Furda and C. J. Brine). Plenum Press, New York. pp. 83-93.
- Hew, L. I., V. Ravindran Y. Mollah and W. L Bryden. 1998. Influence of exogenous xylanase supplementation on apparent metabolisable energy and amino acid digestibility in wheat for broiler chickens. Anim. Feed Sci. Technol. 75:83-92. https://doi.org/10.1016/S0377-8401(98)00206-5
- Hopfer, U. 1997. Digestion and absorption of basic nutritional constituents. In Textbook of Biochemistry with Clinical Correlations (Ed. T. M. Devlin). Wiley-Liss, Inc. New York. pp. 1055-1086
- Ikeda, K. and T. Kusano. 1983. In vitro inhibition of digestive enzymes by indigestible polysaccharides. Cereal Chem. 60:260-263.
- Ikegami, S. F., H. Tsuchihashi, N. Harada, E. Tsuchihashi, Nishide and S. Innami. 1990. Effect of viscous indigestible polysaccharides on pancreatic-biliary secretion and digestive organs in rats. J. Nutr. 120:353-360. https://doi.org/10.1093/jn/120.4.353
- Inagawa, J., I. Kiyosawa, and T. Nagasawa 1987. Effects of phytic acid on the digestion of casein and soybean protein with trypsin, pancreatin ands pepsin. Nippon Eiyo Shokuryo Gakkaishi 40:367-373. https://doi.org/10.4327/jsnfs.40.367
- Jacob, J. P., S. Ibrahim, R. Blair, H. Namkung and I. K. Paik. 2000. Using enzyme supplemented, reduced protein diets to decrease nitrogen and phosphorus excretion of broilers. Asian-Aust. J. Anim. Sci. 13:1561-1567.
- Kanaya, K., K. Yasumoto and H. Mitsuda. 1976. Pepsin inhibition by phytate contained in rice bran. Eiyo To Shokuryo 29:341-346. https://doi.org/10.4327/jsnfs1949.29.341
-
Kikunaga, S., Y. Katoh and M. Takahashi. 1991. Biochemical changes in phosphorus compounds and in the activity of phytase and
$\alpha$ -amylase in the rice (Oryza sativa) grain during germination. J. Sci. Food Agric. 56:335-344. https://doi.org/10.1002/jsfa.2740560309 - Knuckles, B. E., D. D. Kuzmicky, M. R. Gumbmann and A. A. Betschart. 1989. Effect of myo-inositol phosphate esters on in vitro and in vivo digestion of protein. J. Food Sci. 54:1348-1350. https://doi.org/10.1111/j.1365-2621.1989.tb05989.x
-
Kornegay, E. T. 1996. Effect of
$Natuphos^{\circledR}$ phytase on protein and amino acid digestibility and nitrogen retention in poultry. In: Phytase in Animal Nutrition and Waste Management. BASF Corporation, Mount Olive, NJ. pp. 493-514 - Kornegay, E. T., Z. Zhang and D. M. Denbow. 1999. Influence of microbial phytase supplementation of a low protein/amino acid diet on performance, ileal digestibility of protein and amino acids, and carcass measurements of finishing broilers. In: Phytase in Animal Nutrition and Waste Management 2nd edition. BASF Corporation, Mount Olive, NJ. pp. 557-572.
- Kratzer, F. H., L. Earl and C. Chiaravanont. 1974. Factors influencing the feeding values of rice bran for chickens. Poult. Sci. 53:1795-1800. https://doi.org/10.3382/ps.0531795
- Kratzer, F. H. and C. G. Payne. 1977. Effect of autoclaving, hotwater treating, parboiling and addition of ethoxyquin on the value of rice bran as a dietary ingredient for chickens. Brit. Poult. Sci. 18:475-482. https://doi.org/10.1080/00071667708416387
- Martin, E. A., J. V. Nolan, Z. Nitsan and D. J. Farrell. 1998. Strategies to improve the nutritive value of rice bran in poultry diets. IV. Effects of fish meal and a microbial phytase to duckling diets on bird performance and amino acid digestibility. Br. Poult. Sci. 39:612-621. https://doi.org/10.1080/00071669888476
- Mollah, Y., W. L. Bryden, I. R. Wallis, D. Balnave and E. F. Annison. 1983. Studies of low metabolisable energy wheats for poultry using conventional and rapid assay procedures and the effects of feed processing. Br. Poult. Sci. 24:81-89. https://doi.org/10.1080/00071668308416716
- Namkung, H. and S. Leeson. 1999. Effect of phytase enzyme on dietary nitrogen-corrected apparent metabolizable energy and the ileal digestibility of nitrogen and anion acids. Poult. Sci. 78:1317-1319. https://doi.org/10.1093/ps/78.9.1317
- Nyachoti, C. M., C. F. M. de Lange, B. W. McBride S. Leeson and V. M. Gabert. 2000. Endogenous gut nitrogen losses in growing pigs are not caused by increased protein synthesis rates in the small intestine. J. Nutr. 130:566-572. https://doi.org/10.1093/jn/130.3.566
- Parkkonen, T. A., Tervila-Wilo, M. Hopeakoski-Nurminen, A. Morgan, K. Poutanen and K. Autio. 1997. Changes in wheat microstructure following in vitro digestion. Acta Agric. Scand. 47:43-47.
- Potter, L. M. 1998. Bioavailability of phosphorus from various phosphates based on body weight and toe ash measurements. Poult. Sci. 67:96-102.
-
Rajendran, S. and V. Prakash. 1993. Kinetics and thermodynamics of the mechanism of interaction of sodium phytate with
$\alpha$ -globulin. Biochem. 32:3474-3478. https://doi.org/10.1021/bi00064a035 - Ravindran, G. and W. L. Bryden. 1996. Tryptophan content of Australian feedstuffs. In: Proceddings of the Australian Poultry Science Symposium Vol. 8:208.
- Ravindran, V., W. L. Bryden and E. T. Kornegay. 1995. Phytates: occurrence bioavailability and implications in poultry nutrition. Poult. Avian Biol. Rev. 6:125-143.
- Ravindran, V., S. Cabahug, G. Ravindran and W. L. Bryden. 1999a. Influence of microbial phytase on apparent ileal amino acid digestibility in feedstuffs for broilers. Poult. Sci. 78:699-706.
- Ravindran, V., P. H. Selle and W. L. Bryden. 1999b. Effects of phytase supplementation, individually and in combination, with glycanase on the nutritive value of wheat and barley. Poult. Sci. 78:1588-1595. https://doi.org/10.1093/ps/78.11.1588
- Ravindran, V., S. Cabahug, P. H. Selle and W. L. Bryden. 2000. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and nonphytate phosphorus levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Br. Poult. Sci. 41:193-200. https://doi.org/10.1080/00071660050022263
- Ravindran, V., P. H. Selle, G. Ravindran, P. C. H. Morel, A. K. Kies and W. L. Bryden. 2001. Microbial phytase improves performance, apparent metabolizable energy, and ileal anion acid digestibility of broilers fed a lysine-deficient diet. Poult. Sci. 80:338-344. https://doi.org/10.1093/ps/80.3.338
- Reddy, N. R., S. K. Sathe and M. D. Pierson.1988. Removal of phytate from great northern beans (Phaseolus vulgaris L.) and its combined density fraction. J. Food Sci. 53:107-110. https://doi.org/10.1111/j.1365-2621.1988.tb10187.x
- Scheele, C.W., F. den Dekker, J. D. van der Klis, C. Kwakernaak and R. Orsel. 1995. Enzymes affecting the feeding value of wheat containing poultry diets. In: 2nd European Symposium on Feed Enzymes (Ed. W. van Hartingsveldt, M Hessing, J. P. van der Lugt and W. A. C. Somers). pp. 117-123.
- Schneeman, B. O. 1977. The effect of plant fiber on trypsin and chymotrypsin activity in vitro. In: Proceedings of the Federation of American Societies for Experimental Biology Vol. 36:1118.
- Selle, P. H., V. Ravindran, R. A. Caldwell and W. L. Bryden. 2000. Phytate and phytase: Consequences for protein utilisation. Nutr. Res. Rev. 13:255-278. https://doi.org/10.1079/095442200108729098
- Selle, P. H., P. H. Pittolo, R. J. Gill and W. L. Bryden. 2002. Xylanase plus phytase supplementation of broiler diets based on different wheats. In: Proceedings of the Australian Poultry Science Symposium Vol. 14:141-144.
- Silversides, F. G. and M. R. Bedford. 1999. Enzymes may improve energy, protein digestibility. Feedstuffs 71(9):15-17.
- Simons, P. C. M., H. A. J. Versteegh, A. W. Jongbloed, P. A. Kemme, P. Slump, K. D. Bos, M. G. E. Wolters, R. F. Beudeker and G. J. Verschoor. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr. 64:525-540. https://doi.org/10.1079/BJN19900052
- Singh, M. and A. D. Krikorian. 1982. Inhibition of trypsin activity by phytate. J. Agric. Food Chem. 30:799-800. https://doi.org/10.1021/jf00112a049
- Siriwan, P., W. L. Bryden, Y. Mollah and E. F. Annison. 1993. Measurement of endogenous amino acid losses in poultry. Br. Poult. Sci. 34:939-949. https://doi.org/10.1080/00071669308417654
- Sweeney, R. A. 1989. Generic combustion method for determination of crude protein in feeds: Collaborative study. J. Assoc. Off. Anal. Chem. 72:770-774.
- Thompson, L. U. 1988. Phytic acid: a factor influencing starch digestibility and blood glucose response. In: Phytic acid: Chemistry and Applications Pilatus Press. Minneapolis, MN. (Ed. E. Graf). pp. 173-194.
- Vaintraub, I. A. and V. P. Bulmaga. 1991. Effect of phytate on the in vitro activity of digestive proteinases. J. Agric. Food Chem. 39:859-861. https://doi.org/10.1021/jf00005a008
- Zyla, K., D. Gogol, J. Koreleski S. Swiatkiewicz and D. R. Ledoux. 1999. Simultaneous application of phytase and xylanase to broiler feeds based on wheat: feeding experiments with growing broilers. J. Sci. Food Agric. 79:1841-1848. https://doi.org/10.1002/(SICI)1097-0010(199910)79:13<1841::AID-JSFA463>3.0.CO;2-G
- Zyla, K., J. Koreleski, S. Swiatkiewicz, A. Wikiera, M. Kujawski, J. Piironen and D. R. Ledoux. 2000. Effects of phosphorolytic and cell wall degrading enzymes on the performance of growing broilers fed wheat-based diets containing different calcium levels. Poult. Sci. 79:66-76. https://doi.org/10.1093/ps/79.1.66
Cited by
- Effects of Corn Distillers Dried Grains with Solubles Colors and Phytase Levels on the Ileal Amino Acid Digestibility of Broilers vol.36, pp.4, 2009, https://doi.org/10.5536/KJPS.2009.36.4.351
- The effect of phytase and carbohydrase on ileal amino acid digestibility in monogastric diets: complimentary mode of action? vol.65, pp.04, 2009, https://doi.org/10.1017/S0043933909000427
- Amino acid digestibility and poultry feed formulation: expression, limitations and application vol.39, pp.suppl spe, 2010, https://doi.org/10.1590/S1516-35982010001300031
- Effect of Dietary Phytase on Growth Performance and Excreta Excretion of Broilers vol.38, pp.4, 2011, https://doi.org/10.5536/KJPS.2011.38.4.255
- Protein–phytate interactions in pig and poultry nutrition: a reappraisal vol.25, pp.01, 2012, https://doi.org/10.1017/S0954422411000151
- Improvements in growth performance, bone mineral status and nutrient digestibility in pigs following the dietary inclusion of phytase are accompanied by modifications in intestinal nutrient transporter gene expression vol.112, pp.05, 2014, https://doi.org/10.1017/S0007114514001494
- var. Jian) vol.20, pp.6, 2014, https://doi.org/10.1111/anu.12125
- Enhancing the nutritional value of soybeans for poultry through supplementation with new-generation feed enzymes vol.72, pp.02, 2016, https://doi.org/10.1017/S0043933916000271
- Nutrient digestibility and performance responses of growing pigs fed phytase- and xylanase-supplemented wheat-based diets1 vol.86, pp.4, 2008, https://doi.org/10.2527/jas.2007-0018
- Effect of phytase and xylanase supplementation or particle size on nutrient digestibility of diets containing distillers dried grains with solubles cofermented from wheat and corn in ileal-cannulated grower pigs1 vol.89, pp.1, 2011, https://doi.org/10.2527/jas.2010-3127
- Growth Performance, Bone Quality, and Phosphorus Availability in Broilers Given Phosphorus-Deficient Diets Containing Buckwheat (Fagopyrum esculentum) vol.55, pp.4, 2018, https://doi.org/10.2141/jpsa.0170178
- Exogenous phytase and xylanase exhibit opposing effects on real-time gizzard pH in broiler chickens vol.59, pp.5, 2018, https://doi.org/10.1080/00071668.2018.1496403
- Effects of enzyme supplementation on the nutrient, amino acid, and energy utilization efficiency of citrus pulp and hawthorn pulp in Linwu ducks vol.50, pp.6, 2018, https://doi.org/10.1007/s11250-018-1587-6
- Influence of Dietary Phytate and Exogenous Phytase on Amino Acid Digestibility in Poultry: A Review vol.43, pp.2, 2006, https://doi.org/10.2141/jpsa.43.89
- Effect of reconstitution of sorghum with or without enzymes on production performance and immunocompetence in broiler chicken vol.89, pp.6, 2009, https://doi.org/10.1002/jsfa.3546
- Enhancing nutrient utilization of broiler chickens through supplemental enzymes vol.98, pp.3, 2018, https://doi.org/10.3382/ps/pey452
- Effects of Phytase and Carbohydrases Supplementation to Diet with a Partial Replacement of Soybean Meal with Rapeseed Meal and Cottonseed Meal on Growth Performance and Nutrient Digestibility of Growi vol.16, pp.9, 2003, https://doi.org/10.5713/ajas.2003.1339
- Phytase Supplementation of Wheat-Based Broiler Diets Reduces Dependence on Meat-and-Bone Meal vol.43, pp.4, 2003, https://doi.org/10.2141/jpsa.43.330
- Effects of Enzyme Addition to Broiler Diets Containing Varying Levels of Double Zero Rapeseed Meal vol.19, pp.9, 2003, https://doi.org/10.5713/ajas.2006.1354
- Effects of Dietary Lysine and Microbial Phytase on Growth Performance and Nutrient Utilisation of Broiler Chickens vol.20, pp.7, 2003, https://doi.org/10.5713/ajas.2007.1100
- Microbial phytase in poultry nutrition vol.135, pp.1, 2003, https://doi.org/10.1016/j.anifeedsci.2006.06.010
- Phytase 수준별 급여가 육계의 생산성, 인의 배설과 흡수 및 회장과 분에서 소화율에 미치는 영향 vol.34, pp.3, 2003, https://doi.org/10.5536/kjps.2007.34.3.207
- Nutrient utilisation and performance responses of broilers fed a wheat-based diet supplemented with phytase and xylanase alone or in combination vol.146, pp.1, 2003, https://doi.org/10.1016/j.anifeedsci.2007.11.013
- Effects of Supplemental Microbial Phytase and Xylanase on the Performance of Broilers Fed Diets Based on Corn and Wheat vol.46, pp.3, 2003, https://doi.org/10.2141/jpsa.46.217
- Beneficial effects of xylanase and/or phytase inclusions on ileal amino acid digestibility, energy utilisation, mineral retention and growth performance in wheat-based broiler diets vol.153, pp.3, 2009, https://doi.org/10.1016/j.anifeedsci.2009.06.011
- Strategic Selection of Exogenous Enzymes for Corn/soy-based Poultry Diets vol.47, pp.1, 2003, https://doi.org/10.2141/jpsa.009045
- Effects of Multiple Enzyme (ROVABIO® Max) Containing Carbohydrolases and Phytase on Growth Performance and Intestinal Viscosity in Broiler Chicks Fed Corn-Wheat-Soybean Meal Based Diets vol.23, pp.9, 2003, https://doi.org/10.5713/ajas.2010.90592
- Estimation of standardised ileal threonine equivalency values of a multi-enzyme and its effects on broiler chick’s performance vol.10, pp.1, 2003, https://doi.org/10.4081/ijas.2011.e10
- Nitrogen retention, energy, and amino acid digestibility of wheat bran, without or with multicarbohydrase and phytase supplementation, fed to broiler chickens1 vol.96, pp.6, 2018, https://doi.org/10.1093/jas/sky062
- Evaluating phosphorus release by phytase in diets fed to growing pigs that are not deficient in phosphorus1 vol.97, pp.1, 2003, https://doi.org/10.1093/jas/sky402
- Effects of Fermentation on Standardized Ileal Digestibility of Amino Acids and Apparent Metabolizable Energy in Rapeseed Meal Fed to Broiler Chickens vol.10, pp.10, 2003, https://doi.org/10.3390/ani10101774
- Effects of varying diet nutrient density and enzyme inclusion strategy for Ross 708 male broilers under a natural disease challenge vol.29, pp.4, 2003, https://doi.org/10.1016/j.japr.2020.09.005
- Phytase and carbohydrase inclusion strategies to explore synergy within low-energy diets to optimize 56-day male broiler performance and processing vol.29, pp.4, 2003, https://doi.org/10.1016/j.japr.2020.09.013
- Effects of Dietary Fiber on Nutrients Utilization and Gut Health of Poultry: A Review of Challenges and Opportunities vol.11, pp.1, 2003, https://doi.org/10.3390/ani11010181
- Biochemical characterization and enhanced production of endoxylanase from thermophilic mould Myceliophthora thermophila vol.44, pp.7, 2003, https://doi.org/10.1007/s00449-021-02539-1