DOI QR코드

DOI QR Code

Energy Utilization of Growing Chicks in Various Nutritional Conditions

  • Sugahara, Kunio (Department of Animal Science, Faculty of Agriculture, Utsunomiya University)
  • Published : 2003.06.01

Abstract

For the last two decades, energy utilization of growing chicks has been studied more and more. This paper focuses on the energy utilization estimated by the metabolizable energy (ME) values and the efficiency at which ME is used for growth of chicks under various nutritional environment. Degree of saturation of dietary fats is responsible for nitrogen-corrected apparent metabolizable energy (AMEn) of fats. The effect of dietary fat sources on heat production depends on the kind of unsaturated fatty acids as well as the degree of saturation. Medium chain triglyceride shows lower AME and net energy than long chain triglyceride. Phytase as feed additives increases the AME values of the diet along with improvement of the phosphorous utilization. Ostriches have higher ability to metabolize the energy of fiber-rich foodstuffs than fowls. Their higher ability seems to be associated with fermentation of fiber in the hindgut. Proportions of macronutrients in the diets have influenced not only the gain of body protein and energy but also the oxidative phosphorylation of the chicken liver. Essential amino acids deficiency reduces ME/GE (energy metabolizability) little, if any. Growing chicks respond to a deficiency of single essential amino acids with the reduction of energy retained as protein and increased energy retained as fat. Thus, energy retention is proportional to ME intake despite deficiency, and efficiency of ME utilization is not affected by deficiency of amino acids. Effect of oral administration of clenbuterol, a beta-adrenergic agonist, on the utilization of ME varies with the dose of the agents. Although the heat production related to eating behavior has been estimated less than 5% of ME, tube-feeding diets decreases HI by about 30%.

Keywords

References

  1. Balnave, D. 1974. Biological factors affecting energy expenditure. In Energy Requirement of Poultry. E. R. Morris and B. N. Freeman (Ed.). British Poultry Science Ltd., Edinburgh, Scotland, pp. 25-46
  2. Blanch, A., A. C. Barroeta, M. D. Baucells and F. Puchal. 1995. The nutritive value of dietary fats in relation to their chemical composition. Apparent fat availability and metabolizable energy in two-week-old chicks. Poult. Sci. 74:1335-1340 https://doi.org/10.3382/ps.0741335
  3. Buyse, J., E. Decuypere, G. Huyghebaert and M. Herremans. 1991. The effect of clenbuterol supplementation on growth performance and plasma hormone and metabolic levels of broilers. Poult. Sci. 70:993-1002 https://doi.org/10.3382/ps.0700993
  4. Cilliers, S. C., J. P. Hayes, A. Chwalibog, J. J. Du Preez and J. Sales. 1997. A comparative study between mature ostriches and adult cockerels with respect to true and apparent metabolisable energy values for maize, barley, oats and triticale. Brit. Poult. Sci. 38:96-100 https://doi.org/10.1080/00071669708417947
  5. Dalrymple, R. H., P. K. Baker, P. E. Gingher, D. L. Ingle, J. M. Pensack and C. A. Ricks. 1984. A repartitioning agent to improve performance and carcass composition of broilers. Poult. Sci. 63:2376-2383 https://doi.org/10.3382/ps.0632376
  6. Danicke, S., E. Strobel and E. Franke. 2001. Effect of energy source on energy metabolism of broilers. In Energy Metabolism in Animals. A. Chwalibog and K. Jakobsen. (Ed.), EAAP Publication No. 106., pp. 133-136
  7. De Groote. 1974. Utilisation of metabolizable energy. In Energy Requirement of Poultry. E. R. Morris and B. M. Freeman (Ed.). British Poultry Science Ltd., Edinburgh, Scotland, pp.113-133
  8. Dozier, W. A., III, E. T. Moran, JR., and M. T. Kidd. 2001. Male and female broiler responses to low and adequate dietary threonine on nitrogen and energy balance. Poult. Sci. 80:926-930 https://doi.org/10.1093/ps/80.7.926
  9. Dvorin, A., Z. Zoref, S. Mokady and Z. Nitsan. 1998. Nutritional aspects of hydrogenated and regular soybean oil added to diets of broiler chickens. Poult. Sci. 77:820-825 https://doi.org/10.1093/ps/77.6.820
  10. Farrell, D. J. and E. A. Martin. 1998. Strategies to improve the nutritive value of rice bran in poultry diets. III The addition of inorganic phosphorus and a phytase to duck diets. Brit. Poult. Sci. 39:601-611 https://doi.org/10.1080/00071669888467
  11. Farrell, D. J., J. Sales, R. Perez-Maldonado, P. Kent, M. Sheemer and P. F. Mannion. 2001. The apparent metabolisable energy of diets with different sources of fibre when fed to emus, ostriches and cockerels. In Energy Metabolisnm in Animals. A. Chwalibog and K. Jakobsen. (Ed.), EAAP Publication No. 106., pp. 141-143
  12. Friesen, O. D., W. Gunter, R. R. Marquardt and B. A. Rotter. 1992.The effect of enzyme supplementation on the apparent metabolizable energy and nutrient digestibilities of wheat, barley, oats and rye for the young broiler chick. Poult. Sci. 71:1710-1721 https://doi.org/10.3382/ps.0711710
  13. Furuse, M., R. T. Mabayo, K. Kita and J. Okumura. 1992. Effect of dietary medium chain triglyceride on protein and energy utilization in growing chicks. Brit. Poult. Sci. 33:49-57 https://doi.org/10.1080/00071669208417443
  14. Hamano, Y., S. Okada and T. Tanaka. 1999. Effects of thiamine and clenbuterol on body composition, plasma metabolites and hepatic oxygen cunsumption in broiler chicks. Brit. Poult. Sci. 40:127-130 https://doi.org/10.1080/00071669987953
  15. Hedge, S. N., B. A. Rolls, and M. E. Coates. 1982. The effects of the gut microflora and dietary fibre on energy utilization by the chick. Brit. J. Nutr. 48:73-80 https://doi.org/10.1079/BJN19820089
  16. Jamroz, D., K. Jakobsen, A. Wiliczkiewicz and K. E. Knudsen. 2001. The energy value of non-starch polysaccharides(NSP) for young broiler chickens, ducks and geese fed high amounts of barlery. In Energy Metabolism in Animals. A. Chwalibog and K. Jakobsen. (Ed.), EAAP Publication No. 106., pp. 157-160
  17. Ketels, E. and G. De Groote. 1989. Effect of ratio of unsaturated to saturated fatty acids of the dietary lipid fraction on utilization and metabolizable energy of added fats in young chicks. Poult. Sci. 68:1506-1512 https://doi.org/10.3382/ps.0681506
  18. Kim, J-H. and M. G. MacLeod. 2001. Effects of amino acid balance on energy and nitrogen metabolism in broiler chickens: measurement and modeling. In Energy Metabolism in Animals. A. Chwalibog and K. Jakobsen. (Ed.), EAAP Publication No. 106., pp. 113-116
  19. Kino, K. and J. Okumura. 1986. The effect of single essential amino acid deprivation on chick growth and nitrogen and energy balances at ad libitum- and equalized-food intakes. Poult. Sci. 65:1728-1735 https://doi.org/10.3382/ps.0651728
  20. Kita, K., T. Muramatsu and J. Okumura. 1993. Effect of dietary protein and energy intakes on whole-body protein turnover and its contribution to heat production in chicks. Brit. J. Nutr. 69:681-688 https://doi.org/10.1079/BJN19930069
  21. Kleiber, M. 1975. The fire of life an itroduction to animal energetics.Robert E. Krieger Publishing Company, New York. pp.297-332
  22. Kubo, T. and K. Sugahara. 1995. Effect of dietary threonine level and food intake on energy utilization by male growing chicks. Anim. Sci. Technol. (Jpn) 66:233-238
  23. Li, Y., T. Ito and S. Yamamoto. 1991. Use of limited daily access to food in measuring the heat production associated with food intake in laying hens. Brit. Poult. Sci. 32:829-839 https://doi.org/10.1080/00071669108417408
  24. Mabayo, R. T., M. Furuse and J. Okumura. 1992. Energy utilisation of medium chain triglyceride in comparison with long chain triglyceride in growing chicks. Brit. Poult. Sci. 33:883-887 https://doi.org/10.1080/00071669208417530
  25. MacLeod, M. G. 1991. Effects of feeding by crop intubation on energy metabolism and physical activity in domestic cockerels. Brit. Poult. Sci. 32:1089-1095 https://doi.org/10.1080/00071669108417431
  26. MacLeod, M. G. 1997. Effects of amino acid balance and energy:protein ratio on energy and nitrogen metabolism in male broiler chickens. Brit. Poult. Sci. 38:405-411 https://doi.org/10.1080/00071669708418010
  27. Miller, W. S. 1974. The determination of metabolizable energy, In Energy Requirement of Poultry. E. R. Morris and B. M. Freeman (Ed.). British Poultry Science Ltd., Edinburgh, Scotland, pp.91-112
  28. Muramatsu, T., S. Nakajima and J. Okumura. 1994. Modification of energy metabolism by the presence of the gut microflora in the chicken. Brit. J. Nutr. 71:709-717 https://doi.org/10.1079/BJN19940178
  29. Namkung, H. and S. Leeson. 1999. Effect of phytase enzyme on dietary nitrogen-corrected apparent metabolizable energy and illeal digestibility of nitrogen and amino acids in broiler chicks. Poult. Sci. 78:1317-1319 https://doi.org/10.1093/ps/78.9.1317
  30. Nieto, P., C. Prieto, I. Fernandez-Figares and J. F. Aguilera. 1995. Effect of dietary protein quality on energy metabolism of growing chickens. Brit. J. Nutr. 74:163-172 https://doi.org/10.1079/BJN19950120
  31. Nitsan, Z., A. Dvorin, Z. Zoref and S. Mokady. 1997. Effect of added soybean oil and dietary energy on metabolizable and net energy of broiler chicks. Brit. Poult. Sci. 38:101-106 https://doi.org/10.1080/00071669708417948
  32. Ravindran, V., P. H. Selle and W. L. Bryden. 1999a. Effects of phytase supplementation, individually and in combination, with glycanase, on the nutritive value of wheat and barley. Poult. Sci. 78:1588-1595 https://doi.org/10.1093/ps/78.11.1588
  33. Ravindran, V., S. Cabahung, G. Ravindran and W. L. Bryden. 1999b. Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poult. Sci. 78:699-706 https://doi.org/10.1093/ps/78.5.699
  34. Rigoni, M., C. Castrovilli, L. Rapetti and I. Toschi. 2001. Energy metabolism in cocks fed different oils. In Energy Metabolism in Animals. A. Chwalibog and K. Jakobsen. (Ed.), EAAP Publication No. 106., pp. 177-180
  35. Sanz, M., A. Flores and C. J. Lopez-Bote. 2000. The metabolic use of energy from dietary fat in broilers is affected by fatty acid saturation. Brit. Poult. Sci. 41:61-68
  36. Sell, J., L. S. Jin and M. Jeffry. 2001. Metabolizable energy value of conjugated linoleic acid for broiler chicks and laying hens. Poult. Sci. 80:209-214
  37. Shoji, K., K. Totsuka and M. Tajima. 1966. The effects of methionine deficiency on energy metabolism in chicks. Jpn. J. Zootech. Sci. 37:246-252
  38. Sibbald, I. R., 1978. The true metabolizable energy values of mixtures of tallow with either soybean oil or lard. Poult. Sci. 57:473-477 https://doi.org/10.3382/ps.0570473
  39. Sibbald, I. R. and M. S. Wolynetz. 1986. Effects of dietary lysine and feed intake on energy utilization and tissue synthesis by broiler chicks. Poult. Sci. 65:98-105 https://doi.org/10.3382/ps.0650098
  40. Sugahara, K., T. Kubo and I. Tasaki. 1985. Involvement of feed intake in the decreased energy retention in chicks fed an arginine-deficient diet. Jpn. Poult. Sci. 22:45-54 https://doi.org/10.2141/jpsa.22.45
  41. Sugahara, K. and T. Kubo. 1992a. Involvement of food intake in the decreased energy retention associated with single deficiencies of lysine and sulphur-containing amino acids in growing chicks. Brit. Poult. Sci. 33:805-814 https://doi.org/10.1080/00071669208417522
  42. Sugahara, K. and T. Kubo. 1992b. Effect of dietary tryptophan level and food intake on energy utilization by male growing chicks. Asian-Australasian J. Anim. Sci. 5:647-651 https://doi.org/10.5713/ajas.1992.647
  43. Sugahara, K. and T. Kubo. 1996. Effect of isoleucine level and food intake on energy utilization by growing male chicks. Jpn. Poult. Sci. 33:33-39 https://doi.org/10.2141/jpsa.33.33
  44. Takahashi, K., Y. Akiba and M. Horiguchi. 1993. Effects of betaadrenergic agonist (Clenbuterol) on performance, carcass composition, hepatic microsomal mixed function oxidase and antibody production in female broilers treated with or without corticosterone. Brit. Poult. Sci. 34:167-175 https://doi.org/10.1080/00071669308417572
  45. Tasaki I., K. Katsu and J. Okumura. 1972. Effect of dieatry lysine deficiency on energy and nitrogen metabolism in growing chicks. Jpn. J. Zootech. Sci. 43:203-211
  46. Toyomizu, M., Y. Akiba, T. Matsumoto and M. Horiguchi. 1985. Response surfaces of body protein and energy gains in growing chicks fed diets over the entire range of compositions of protein, fat and carbohydrate. J. Nutr. 115:61-69 https://doi.org/10.1093/jn/115.1.61
  47. Toyomizu, M., D. Kirihara, M. Tanaka, K. Hayashi and Y. Tomita. 1992. Dietary protein level alters oxidative phosphorylation in heart and liver mitochondria of chicks. Brit. J. Nutr. 68:89-99 https://doi.org/10.1079/BJN19920069
  48. Ueda, H., H. Yokota and I. Tasaki. 1981. Energy and utilization of chicks forced-fed a methionine-excess diet. Nutr. Rep. Intl. 23:661-668
  49. Van Kampen, M. 1976. Activity and energy expenditure in laying hens 3. The energy cost of eating and posture. J. agric. Sci., Camb. 87:85-88 https://doi.org/10.1017/S0021859600026617
  50. Villamide, M. J., J. M. Fuente, P. P. De Ayala and A. Florest. 1997. Energy evaluation of eight barley cultivars for poultry: Effect of dietary enzyme addition. 76:834-840 https://doi.org/10.1093/ps/76.6.834
  51. Wang, J. Y. and T. Ito. 2001. Changes in behavior and heat production of broilers during growth. Jpn. Poult. Sci. 38:J66-71 https://doi.org/10.2141/jpsa.38.J66
  52. Wiseman, J. and F. Salvador. 1991. The influence of free fatty acid content and degree of saturation on the apparent metabolizable energy value of fats fed to broilers. Poult. Sci. 70:573-582 https://doi.org/10.3382/ps.0700573
  53. Xiyi, M., J. Shihou, Y. Xiufang, L. Yingjun and S. Qun. 1994. Influence of clenbuterol on energy and protein metabolism in broilers. In Energy Metabolism of Farm Animals. J. F. Aguilera (Ed.), EAAP Publication No. 76. pp. 285-288
  54. Yanaka, M. and I. Tasaki. 1980. Effect of graded levels of sulfur amino acids on the energy metabolism in chicks equally-fed diets. Jpn. J. Zootech. Sci. 51:706-710
  55. Young, R. J. 1961. The energy value of fats and fatty acids for chicks. Poult. Sci. 40:1225-1233 https://doi.org/10.3382/ps.0401225

Cited by

  1. A Review of Dietary Metabolizable and Net Energy: Uncoupling Heat Production and Retained Energy vol.28, pp.2, 2003, https://doi.org/10.3382/japr/pfx062