DOI QR코드

DOI QR Code

Retinoic Acid-Induced Golgi Apparatus Disruption in F2000 Fibroblasts: A Model for Enhanced Intracellular Retrograde Transport

  • Received : 2002.08.30
  • Accepted : 2002.12.11
  • Published : 2003.05.31

Abstract

Retinoic acid (RA) can transform the Golgi apparatus (GA) into a diffuse vacuolar aggregate and increase the toxicity of some immunotoxins that enter into cells by receptor-mediated endocytosis. An ultramorphological study of the RA-induced GA disruption was performed on F2000 fibroblasts. Cultures were treated with 0.11 to $30\;{\mu}M$ RA for 7 - 180 min. The endocytosis of Limax flavus agglutinin-peroxidase conjugate (LFA), and the interactions between a phorbol ester (PMA) and RA concerning GA disruption, were examined. Exposure to $0.33\;{\mu}M$ RA for 20 min transformed the GA into vacuolar aggregate. These vacuoles were not involved in endocytosis since they remained unstained after endocytosis of LFA. However, the lysosomes were involved in endocytosis, as they were strongly stained. Therefore, a RA-induced shift towards lysosomal routing of the entered LFA was presumed. Exposure to PMA made cells resistant to the Golgi-disturbing effects of RA, indicating that protein kinase C plays an important role in this process.

Keywords

References

  1. Allen, J. G. and Bloxham, D. P. (1989) The phannacology and phannacokinetics of the retinoids. Pharmacol. Ther. 40, 1-27. https://doi.org/10.1016/0163-7258(89)90071-5
  2. Allenby, G., Bocquel, M. T., Saunders, M., Kazmer, S., Speck, J., Rosenberger, M., Lovey, A., Kastner, P., Grippo. J. F. and Chambon, P. (1993) Retinoic acid receptors and retinoid X receptors interactions with endogenous retinoic acid. Proc. Nat. Acad. Sci. USA 90, 30-34. https://doi.org/10.1073/pnas.90.1.30
  3. Anderson, W. B., Thomas. T. P., Plet, A. and Evain-Brion, D. (1985) Effects of retinoic acid on cyclic-AMP dependent and calcium, phospholipid dependent protein kinase activities: counteraction to phorbol ester tumor promotion; in Retinoids, new trends in researrh and therapy, pp 40-47, Karger, Basel, Switzerland.
  4. Bouzinba-Segard, H., Fan, X. T., Prederiset, M. and Castanga, M. (1994) Synergy between phorbol esters and retinoic acid in inducing protein kinase C activation. Biochem. Biophys. Res. Commum. 204, 112-119. https://doi.org/10.1006/bbrc.1994.2433
  5. Carter. C. A., Parham, G. P. and Chambers, T. (1998) Cytoskeletal reorganization induced by retinoic acid treatment of human eudiometrical adenocarcinoma (RL95-2) cells is correlated with alteration in protein kinase C alpha. Pathobiology 66. 284-292. https://doi.org/10.1159/000028035
  6. Cope, F. O. (1986) The in vivo inhibition of mouse brain protein kinase-C by retinoic acid. Cancer Lett. 30, 275-288. https://doi.org/10.1016/0304-3835(86)90052-2
  7. Cope, F. O. and Boutwell, R. K. (1985) A role for retinoids and a tumor promoting phorbol ester in the control of protein phosphorylation; in Retinoids, new trends in research and therapy, pp. 106-124, Karger, Basel, Switzerland.
  8. Dillman, R. O. (2001) Monoclonal antibodies in the treatment of malignancy: basic concepts and recent developments. Cancer Invest. 19, 833-841. https://doi.org/10.1081/CNV-100107745
  9. Dinter. A. and Berger, E. G. (1998) Golgi disturbing agents. Histochem. Ceil. BioI. 109, 571-590.
  10. Evain-Brion, D., Raynaud, F., Tournier, S., Plet. A. and Anderson, W. B. (1991) Retinoic acid and cellular signal transduction; in Retinoids: 10 years on, Stuart, J. H. (ed.), pp. 46-55, Karger, Basel, Switzerland.
  11. Hedman, K., Pastan, I. and Willingham, M. C. (1986) The organelles of the trans domain of the cell. UItrastructural localization of sialoglycoconjugates using Limax flavus agglutinin. J. Histochem. Cytochem. 8, 1069-1077.
  12. Jurcic, J. G., Scheinberg, D. A. and Houghton, A. N. (1996) Monoclonal antibody therapy of cancer; in Cancer Chemotherapy and Biological Modifiers. Annual 16, Pinedo, H. M., Longo, D. L. and Chabner, B. A. (eds.), pp. 168-188, Elsevier, Amsterdam, Netherlands.
  13. Kahl-Rainer, P. and Marian, I. (1994) Retinoids inhibit protein kinase C dependent transduction of 1,2-diglyceride signals in human colonic tumor celis. Nutr. Cancer 21, 157-168. https://doi.org/10.1080/01635589409514313
  14. Kurie, J. M., Younes, A., Miller, W. H., Burchet, M., Chiu, C. F., Kolesnick, R. and Dimitrovsky, E. (1993) Retinoic acid stimulates the protein kinase C pathway before activation of its beta nuclear receptor during human teratocarcinoma differentiation. Biochem. Biophys. Acta 1179, 203-207. https://doi.org/10.1016/0167-4889(93)90142-C
  15. Lippincott-Schwartz, J., Yuan, L. C, Bonifacio, J. S. and Klausner, R. D. (1989) Rapid redistribution of Golgi proteins into the endoplasmatic reticulum in cells treated with Brefeldin A: evidence of membrane cycling from Golgi to endoplasmatic reticulum. Cell 56, 801-813. https://doi.org/10.1016/0092-8674(89)90685-5
  16. Lippman, S. M. and Davies, P. J. (1997) Retinoids, neoplasia and differentiation therapy. Cancer Chemother. BioI. Response Modif. 17, 349-362.
  17. Morre, D. J., Morre, D. M., Bowen, S., Reutter, W. W. and Windel, K. (1988) Vitamin A excess alters membrane flow in rat liver. Eur. J. Cell. BioI. 46, 306-315.
  18. Morre, D. M. (1992) Intracellular actions of vitamin A. Int. Rev. Cytol. 125, 1-39.
  19. Morr, D. M., Wang, S., Chueh, P. J., Lawler, J., Safranski, K., Jacobs, E. and Morre. D. J. (1998) A molecular basis for retinol stimulation of vesicle budding in vivo and in vitro. Mol. Cell. Biochem. 187, 73-83. https://doi.org/10.1023/A:1006839911682
  20. Nowack, D. D., Paulik, M., Morre, D. J. and Morre, D. M. (1990) Retinol modulation of cell free membrane transfer between endoplasmatic reticulum and Golgi apparatus. Biochem. Biophys. Acta 1051, 250-258. https://doi.org/10.1016/0167-4889(90)90130-6
  21. Pavelka. M., Ellinger, A., Debbage, P. L., Loewe, C., Vetterlein, M. and Roth. J. (1998) Endocytic routes to the Golgi apparatus. Histochem Cell. BioI. 109, 555-570. https://doi.org/10.1007/s004180050255
  22. Petkovich, M. (1992) Regulation of gene expression by vitamin A: the role of nuclear retinoic acid receptor. Ann. Rev. Nutr. 12, 443-471. https://doi.org/10.1146/annurev.nu.12.070192.002303
  23. Sandvig, K., Prydz, K., Hansen, S. H. and van Deurs, B. (1991) Ricin transport in Brefeldin A-treated cells: correlation between Golgi structure and toxic effect. J. Cell. Biol. 115, 971-981. https://doi.org/10.1083/jcb.115.4.971
  24. Tang. W. and Ziboh, V. A. (1991) Phorbol ester inhibits 13-cis retinoic acid induced hydrolysis of phosphatidylinositol 4,5 bisphosphate in cultured murine keratinocytes: a possible negative feedback via protein kinase C activation. Cell. Biochem. Funct. 9, 183-191. https://doi.org/10.1002/cbf.290090306
  25. Toker A. (1998) Signaling through protein kinase C. Front. Biosci. 3, D1134-1147.
  26. Varani, J Burmeister, W., Bleavins, M. R. and Johnson, K. (1996) All-trans retinoic acid reduces membrane fluidity of human dermal fibroblast. Am. J. Pathol. 148, 1307-1312.
  27. Wu, Y. N., Gadina, M., Tao-Cheng J. H. and Youle, R. J. (1994) Retinoic acid disrupts the Golgi apparatus and increases the cytosolic routing of specific protein toxins. J. Cell. Biol. 125, 743-753. https://doi.org/10.1083/jcb.125.4.743
  28. Zhao, J., Morre, D. J., Paulik, M., Yim, J. and Morre, D. M. (1990) GTP hydrolysis by transitional endoplasmatic reticulum from rat liver inhibited by all-trans retinol. Biochem. Biophys. Acta 1055, 230-233. https://doi.org/10.1016/0167-4889(90)90037-E