참고문헌
- Mori, B., Kusima, K., Iwasaki, T. and Omiya, H. Dietary fiber content of seaweed. Nippon Nogeikagaku 55: 787-791 (1981) https://doi.org/10.1271/nogeikagaku1924.55.787
- Nishimune, T., Sumimoto, T., Yakusiji, T. and Kunita, N. Determination of total dietary fiber in Japanese foods. J. Assoc. Off. Anal. Chem. 74(2): 350-359 (1991)
- Kennedy, J.F., Griffiths, A.J. and Atkins, D.P. Gums and Stabilizers for the Food Industry, p. 422. Pergamon Press, Oxford, UK (1984)
- McNeely, W.H. and Pettitt, D.J.H. Industrial Gums, 2nd ed., p. 49. Academic Press, New York, USA (1973)
- Park, Y.H., Chang, D.S. and Kim, S.B. Utilization of Fisheries Resources, pp. 944-953. Hyung- Seol Pub., Seoul (1994)
- You, B.J. and Shim, J.M. Effects of processing conditions on physical properties of alginate film. Korean J. Food Soc. 32(5): 582-586 (1999)
- Kim, Y.Y. and Cho, Y.J. Studies on physicochemical and biological properties of depolymerized alginate from sea tangle, Laminaria japonicus by thermal decomposition. Changes in viscosity, average molecular weight and chemical structure of depolymerized alginate. J. Korean Fish. Soc. 33(4): 325-330 (2000)
- Chang, D.S., Cho, H.R., Lee. H.S., Park, M.Y. and Lim, S.M. Development of alginic acid hydrolysate as a natural food preservative for fish meat paste products. Korean J. Food Sci. Technol. 30(4): 823-826 (1998)
- Ikeda, A., Takemura, A. and Ono, H. Preparation of low-molecular weight alginic acid by acid hydrolysis. Carbohydr. Polym. 42: 421-425 (2000) https://doi.org/10.1016/S0144-8617(99)00183-6
- Kang, l.J., Byun, M.W, Yook, H.S., Bae, C.H., Lee, H.S., Kwon, J.H. and Chung, C.K. Production of modified srarches by gamma irradiation. Radial. Phys. Chem. 54: 425-430 (1999) https://doi.org/10.1016/S0969-806X(98)00274-6
-
Humphreys, E.R. and Howells, G.R. Degradation of sodium alginate by
$\gamma$ -irradiation and by oxidative-reductive depolymerization. Carbohydr. Res. 16: 65-69 (1970) https://doi.org/10.1016/S0008-6215(00)86099-1 - Vega, M.P., Lima, E.L. and Pinto, J.C. In-line monitoring of average molecular weight in solution polymerizations using intrinsic viscosity measurements. Polymer 42: 3909-3914 (2001) https://doi.org/10.1016/S0032-3861(00)00780-1
- Park, S.M. and Lee, K.T. Effects of pH and molecular weight on the intrinsic viscosity of carboxymethyl chitin. J. Korean Fish. Soc. 28(4): 487-491 (1995)
- Pyun, H.C. and Nho, Y.C. The utilization of radiation in polymer industries. Polymer 12(5): 389-397 (1988)
- Yang, J.S. and Lee, S.R. Effects of ionizing radiation on the extraction yield and viscosity of alginate. Korean J. Food Sci. Technol. 9(3): 194-198 (1977)
- Naotsugu, N., Hiroshi, M., Fumio, Y. and Tamikazu, K. Radiation-induced degradation of sodium alginate. Polym. Degradat, Stab. 69: 279-285 (2000) https://doi.org/10.1016/S0141-3910(00)00070-7
- Toru, H. and Setsuko, T. Detection of irradiation peppers by viscosity measurement at extremely high pH. Radial. Phys. Chem. 48(1): 101-104 (1996) https://doi.org/10.1016/0969-806X(95)00434-Y
- Rong, H.C. and Min, L.T Effect of temperature on the intrinsic viscosity and conformation of chitosans in dilute HCl solution. Biol. Macromol. 23: 135-141 (1998) https://doi.org/10.1016/S0141-8130(98)00036-1
- Marco, M., Mauro, M. and Fabiana, S. Rheological behaviour ofaqueous dispersions of algal sodium alginates. J. Food Eng. 28: 283-295 (1996) https://doi.org/10.1016/0260-8774(95)00068-2
- Gura, E., Huckel, M. and Muller, P.J. Specific degradation of hyaluronic acid and its rheological properties. Polym. Degradat, Stab. 59: 297-302 (1998) https://doi.org/10.1016/S0141-3910(97)00194-8
- Olav, S. Solution properties of alginate. Carbohydr. Res. 13: 359-372 (1970) https://doi.org/10.1016/S0008-6215(00)80593-5
- Alan, I. Thickening and Gelling Agents for Food, pp. 1-21. Chapman & Hall, UK (1997)