감마선과 유기산을 이용한 알긴산 용액의 저분자화에 대한 연구

Degradation of Alginate Solution by Using ${\gamma}-Irradiation$ and Organic Acid

  • 조민 (경희대학교 식품공학과) ;
  • 김병용 (경희대학교 식품공학과) ;
  • 임종환 (목포대학교 식품생물공학과)
  • Cho, Min (Department of Food Engineering, Kyung Hee University) ;
  • Kim, Byung-Yong (Department of Food Engineering, Kyung Hee University) ;
  • Rhim, Jong-Hwan (Department of Food Bio-Engineering, Mokpo National University)
  • 발행 : 2003.02.01

초록

알긴산의 저분자화를 목적으로 선량을 달리한 감마선 처리와 유기산의 pH, 온도 그리고 산의 종류를 달리하여 실험을 실시하였다. 우선 5%(w/w)의 알긴산 수용액의 $2{\sim}100\;kGy$ 감마선 처리는 약 $125,000\;Da{\sim}10,500\;Da$ 범위의 분자량을 보였고, 고유점도는 약 $600{\sim}10(g/g)$의 값을 나타나게 했다. 분자량과 고유점도 모두 10 kGy의 선량까지는 급격히 감소하고 $10{\sim}100\;kGy$까지는 비교적 완만히 감소됨을 보아 10 kGy까지의 감마선 조사가 알긴산의 급격한 분해를 일으키는 것으로 나타났다. 분자량과 고유점도의 관계식인 Mark-Houwink 식은 감마선 조사를 통해 $[{\eta}]=2.2{\times}10^{-6}\;Mw^{1.656}\;(R^2=0.998)$으로 유도할 수 있었다. 유기산에 의한 알긴산의 분자량의 변화는 일정 pH와 일정 온도에서 방사선 조사량의 저분자화 효과와 비교를 할 수 있는 효과가 있는 것으로 나타났으며, 유기산 종류에 따른 분자량 변화는 ascorbic acid를 이용할 경우, 저분자화 효과가 우수한 결과가 나왔지만 유기산에 의한 알긴산의 저분자화 효과는 계속적인 보완연구가 이루어져야 할 것이다.

Alginates were irradiated in an aqueous solution with $Co^{60}$ gamma rays in the dose ranges from 0 to 100 kGy, and investigated the relationship between the intrinsic viscosity $([{\eta}])$ and the molecular weight $(M_w)$ of alginates. The molecular weight of alginate was measured by gel permeation chromatography and the ranges from 1,894 to 135,174 Da were obtained. The molecular weight of alginate decreased markedly with increasing the degree of ${\gamma}-ray$ dose rate. The intrinsic viscosity of alginate solution after ${\gamma}-irradiation$ showed the ranges from 9.83 (g/g) to 602.69 (g/g), depending upon the ${\gamma}-irradiation$ dose. The molecular weight of alginate dependence of the intrinsic viscosity of the alginate solution would be expressed by Mark-Houwink equation. With a linearization of molecular weight and the intrinsic viscosity of the alginate solution, Mark-Houwink equation could be expressed with constant variables and the real data fitted to the equation of $[{\eta}]=2.2{\times}10^{-6}\;{M_w}^{1.656}\;(R^2=0.998)$.

키워드

참고문헌

  1. Mori, B., Kusima, K., Iwasaki, T. and Omiya, H. Dietary fiber content of seaweed. Nippon Nogeikagaku 55: 787-791 (1981) https://doi.org/10.1271/nogeikagaku1924.55.787
  2. Nishimune, T., Sumimoto, T., Yakusiji, T. and Kunita, N. Determination of total dietary fiber in Japanese foods. J. Assoc. Off. Anal. Chem. 74(2): 350-359 (1991)
  3. Kennedy, J.F., Griffiths, A.J. and Atkins, D.P. Gums and Stabilizers for the Food Industry, p. 422. Pergamon Press, Oxford, UK (1984)
  4. McNeely, W.H. and Pettitt, D.J.H. Industrial Gums, 2nd ed., p. 49. Academic Press, New York, USA (1973)
  5. Park, Y.H., Chang, D.S. and Kim, S.B. Utilization of Fisheries Resources, pp. 944-953. Hyung- Seol Pub., Seoul (1994)
  6. You, B.J. and Shim, J.M. Effects of processing conditions on physical properties of alginate film. Korean J. Food Soc. 32(5): 582-586 (1999)
  7. Kim, Y.Y. and Cho, Y.J. Studies on physicochemical and biological properties of depolymerized alginate from sea tangle, Laminaria japonicus by thermal decomposition. Changes in viscosity, average molecular weight and chemical structure of depolymerized alginate. J. Korean Fish. Soc. 33(4): 325-330 (2000)
  8. Chang, D.S., Cho, H.R., Lee. H.S., Park, M.Y. and Lim, S.M. Development of alginic acid hydrolysate as a natural food preservative for fish meat paste products. Korean J. Food Sci. Technol. 30(4): 823-826 (1998)
  9. Ikeda, A., Takemura, A. and Ono, H. Preparation of low-molecular weight alginic acid by acid hydrolysis. Carbohydr. Polym. 42: 421-425 (2000) https://doi.org/10.1016/S0144-8617(99)00183-6
  10. Kang, l.J., Byun, M.W, Yook, H.S., Bae, C.H., Lee, H.S., Kwon, J.H. and Chung, C.K. Production of modified srarches by gamma irradiation. Radial. Phys. Chem. 54: 425-430 (1999) https://doi.org/10.1016/S0969-806X(98)00274-6
  11. Humphreys, E.R. and Howells, G.R. Degradation of sodium alginate by $\gamma$-irradiation and by oxidative-reductive depolymerization. Carbohydr. Res. 16: 65-69 (1970) https://doi.org/10.1016/S0008-6215(00)86099-1
  12. Vega, M.P., Lima, E.L. and Pinto, J.C. In-line monitoring of average molecular weight in solution polymerizations using intrinsic viscosity measurements. Polymer 42: 3909-3914 (2001) https://doi.org/10.1016/S0032-3861(00)00780-1
  13. Park, S.M. and Lee, K.T. Effects of pH and molecular weight on the intrinsic viscosity of carboxymethyl chitin. J. Korean Fish. Soc. 28(4): 487-491 (1995)
  14. Pyun, H.C. and Nho, Y.C. The utilization of radiation in polymer industries. Polymer 12(5): 389-397 (1988)
  15. Yang, J.S. and Lee, S.R. Effects of ionizing radiation on the extraction yield and viscosity of alginate. Korean J. Food Sci. Technol. 9(3): 194-198 (1977)
  16. Naotsugu, N., Hiroshi, M., Fumio, Y. and Tamikazu, K. Radiation-induced degradation of sodium alginate. Polym. Degradat, Stab. 69: 279-285 (2000) https://doi.org/10.1016/S0141-3910(00)00070-7
  17. Toru, H. and Setsuko, T. Detection of irradiation peppers by viscosity measurement at extremely high pH. Radial. Phys. Chem. 48(1): 101-104 (1996) https://doi.org/10.1016/0969-806X(95)00434-Y
  18. Rong, H.C. and Min, L.T Effect of temperature on the intrinsic viscosity and conformation of chitosans in dilute HCl solution. Biol. Macromol. 23: 135-141 (1998) https://doi.org/10.1016/S0141-8130(98)00036-1
  19. Marco, M., Mauro, M. and Fabiana, S. Rheological behaviour ofaqueous dispersions of algal sodium alginates. J. Food Eng. 28: 283-295 (1996) https://doi.org/10.1016/0260-8774(95)00068-2
  20. Gura, E., Huckel, M. and Muller, P.J. Specific degradation of hyaluronic acid and its rheological properties. Polym. Degradat, Stab. 59: 297-302 (1998) https://doi.org/10.1016/S0141-3910(97)00194-8
  21. Olav, S. Solution properties of alginate. Carbohydr. Res. 13: 359-372 (1970) https://doi.org/10.1016/S0008-6215(00)80593-5
  22. Alan, I. Thickening and Gelling Agents for Food, pp. 1-21. Chapman & Hall, UK (1997)