Lactic Acid Fermentation and Biological Activities of Rubus coreanus

복분자의 유산발효와 생리활성 평가

  • Published : 2003.11.30

Abstract

The puree of Rubus coreanus was fermented using lactic acid bacteria and its biological activities were examined. Lactobacillus acidophilus KCCM 32820, L. casei KCCM 12452, Lactococcus lactis subsp. lactis KCCM 40104, and Streptococcus thermophilus KCCM 40430 were used as a single or mixed starter for the lactic acid fermentation, and their cultures at the late logarithmic growth phase were inoculated to final concentration of 2% (v/v). L. casei fermented the puree of Rubus coreanus best when used as a single starter, and the culture of L. casei and L. lactis with the inoculation ratio of one to one showed the highest fermentation activity when used as a mixed starter. However, the fermented broth of the puree of Rubus coreanus using L. acidophilus and S. thermophilus showed the best results in the sensory evaluation. The optimal lactic acid fermentation conditions were as follows; the concentration of oligosaccharide added was 1% (w/v), pH of puree and fermentation temperature were 4.0 and $37^{\circ}C$, respectively, and fermentation time was $72{\sim}96$ hours. Glucose and fructose were major free sugars, and the content of lactic acid was 698.2 mg/100 g in the fermented broth. The fermented broth of the puree of Rubus coreanus showed the electron donating ability and nitrite scavenging ability with the value of 69% and 38.3% at pH 1.2, respectively. SOD-like activity and inhibitory activity on xanthine oxidase were also found in the fermented broth with the value of 60.3% and 41.8%, respectively. When the antimicrobial activities of the fermented broth were examined, it showed the highest growth inhibitory activity against Escherichia coli O-157:H7, and also contained antimicrobial activities against Salmonella typhimurium, Bacillus cereus, and Staphylococcus aureus.

복분자 과육의 농축액을 유산균을 이용하여 발효시킨 후 발효액의 생리활성을 평가하였다. 발효에는 Lactobacillus acidophilus KCCM 32820, L. casei KCCM 12452, Lactococcus lactis subsp. lactis KCCM 40104, Streptococcus thermophilus KCCM 40430을 단독 또는 혼합하여 사용하였으며 접종량은 대수증식기 말기의 배양액을 2%(v/v)가 되도록 첨가하였다. 단독발효의 경우 L. casei의 발효능이 가장 우수하였으며 혼합 starter를 사용하였을 경우에는 L. casei와 L. lactis를 1:1로 혼합하였을 때 가장 우수한 발효능을 나타내었으나 관능검사에 있어서 L. acidophilus와 S. thermophilus를 이용하였을 때 종합적 기호도가 가장 높았다. 발효는 올리고당을 1%(w/v) 첨가하고 pH를 4.0, 발효온도를 $35{\sim}37^{\circ}C$로 하였을 때 $72{\sim}96$시간에서 가장 잘 이루어졌다. 발효액에는 glucose와 fructose가 주요 유리당으로 존재하였고 lactic acid 함량은 698.2 mg/100 g으로 발효전보다 9배 이상 증가하였다. 발효액의 생리활성을 측정한 결과 69%의 전자공여효과를 나타내었으며 아질산염 소거기능은 pH 1.2에서 38.3%, SOD 유사활성과 xanthine oxidase 저해활성은 각각 60.3%와 41.8%의 활성을 나타내었다. 발효액은 Escherichia coli 0-157:H7에 대해서는 17.3%의 생육저해율을 나타내 사용한 검정균 중에서 가장 높은 항균력을 보였으며 Salmonella typhimurium과 Bacillus cereus에 대해서는 각각 8.9%, 9.7%의 생육저해효과를 나타내었고 Staphylococcus aureus에 대해서는 7.2%의 생육저해효과를 나타내었다.

Keywords

References

  1. Bae, G. H. (2000) In The Medical Plants of Korea. Kyohak Publishing Co., Ltd., Seoul
  2. Bang, G. C. (1996) Tannins from the fruits of Rubus coreanum. M. S. Thesis, Chungang University, Ansung
  3. Lee, Y. A. (1995) Tannins from Rubus coreanus. Kor. J. Pharmacogn. 26, 27-35
  4. Chou, W. H., Oinaka, T., Kanamaru, F., Mizutani, K., Chen, F. H. and Tanaka, O (1987) Diterpene glycoside from leaves of chinese Rubus chingii and fruits of R. suavissimus and , identification of the source plant of the chinese folk medicine Fu-pen-zi. Chem. Pharm. Bull. 35, 3021-3024 https://doi.org/10.1248/cpb.35.3021
  5. Hattori, M., Kuo, K. P., Shu, Y. Z., Tezuka, Y., Kikuchi, T. and Namba, T. A. (1988) Triterpenses from the fruits of Rubus chingii. Phytochemistry 27, 3975-3976 https://doi.org/10.1016/0031-9422(88)83061-9
  6. Kim, H. C. and Lee, S. I. (1991) Comparison of functional effects of geni Rubus. J. Herb. 6, 3-11
  7. Costantino, L., Albasini, A., Rasteli, G. and Benvenuti, S. (1992) Activity of polyphenolic crude extracts as scavengers of superoxide radicals and inhibitors of xanthine oxidase. Planta Med. 58, 342-345 https://doi.org/10.1055/s-2006-961481
  8. Park, H. J., Min, Y. K., Kim, K. Y. and Kang, S. W. (1998) Sterilization effect of hydiostatic pressure and low temperature treatments on the jujube wine. Food Eng. Prog. 2, 163-170
  9. AOAC (1990) Official Methods of Analysis, (15th ed.) Association of Official Analytical Chemists, Washington, DC, USA
  10. Lee, Y. C. and Kim, K. O. (1994) In Sensory Evaluation of Foods. Hakyeonsa, Seoul
  11. SAS Institute Inc. (1996) SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA
  12. Blois, M. S. (1958) Antioxidant determination by the use of a stable free radical. Nature 181, 1199 https://doi.org/10.1038/1811199a0
  13. Gray, J. I. and Dugan Jr, L. R. (1975) Inhibition of N nitrosamine formation in model food systems. J. Food Sci. 40, 981-984 https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  14. Marklund, S. and Gudrun, M. (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  15. Cha, H. S., Park, M. S. and Park, K. M. (2001) Physiological activities of Rubus coreanus Miquel. Korean J. Food Sci. Technol. 33. 409-415
  16. Harada, M., Ishiwata, H., Nakamura, Y., Tanimura, A. and Ishidate, M. (1974) Studies on in vivo formation of nitroso compounds nitrite and nitrate contained in human saliva. J. Japan Soc. Food Nutr. 15, 206-207
  17. Tannenbaum, S. R, Sinskey, A. J. and Weisman, M. (1974) Nitrite in human saliva: Its possible relation to nitrosamine formation. J. Nat. Cancer Inst. 53, 79-84
  18. Leonard, B. (1976) In Nitrogen Metabolism in Plants, Edward Arnold, New York
  19. Hayashi, N. and Watanabe, K. (1978) Fate of nitrate and nitrite in saliva and blood of monkey admimstered orally sodium nitrate solution and microflora of oral cavity of the monkey. J. Food Hyg. Soc. Japan 19, 392-400 https://doi.org/10.3358/shokueishi.19.392
  20. Takagi, S. and Nakao, Y. (1971) Effect of nitrate during curing. J. Japan Soc. Food Sci. Tech. 18, 1-7 https://doi.org/10.3136/nskkk1962.18.1
  21. Peter. F. S. (1975) The toxicology of nitrate, nitrite and N-nitroso compounds. J. Sci. Food Agric. 26, 1761-1770 https://doi.org/10.1002/jsfa.2740261119
  22. Crosby, N. T. and Sawyer, R. (1976) N-nitrosamines: A review of chemical and biological properdties and their estimation in foodstuffs. Adv. Food Res. 21, 1-56
  23. Fiddler, W., Pensabene, J. W., Kushnir, I. and Piotrowski, E. G. (1973) Effect of frankfurter cure ingredients on N-nitrosodimethyamine formation in a model system. J. Food Sci. 38, 714-717 https://doi.org/10.1111/j.1365-2621.1973.tb02852.x
  24. Dutton, A. and Health, D. F. (1958) The detection of metabolic products from dimethyl nitrosamine in rats and mice. Biochem. J. 70, 619-625
  25. Mugee, P. N. and Hultin, J. (1962) Toxic liver injury and carcinogenesis: Methylation of proteins of rat liver slice by dimethynitrosamine in vitro. Biochem. J. 83, 108-117
  26. Park, Y. B., Lee, T. G., Kim, O. K., Do, J. R., Yeo, S. G., Park, Y. H. and Kim, S. B. (1995) Characteristics of nitrite scavenger derived from seeds of Cassia tora L. Korean J. Food Sci. Technol. 27, 124-128