Separation of Heme-iron by Dialysis

투석법에 의한 Heme-iron의 분리

  • Kang, In-Kyu (Department of Food Science and Technology, and Food Science Research Institute, Kongiu National University) ;
  • In, Man-Jin (Department of Human Nutrition and Food Science, Chungwoon University) ;
  • Oh, Nam-Soon (Department of Food Science and Technology, and Food Science Research Institute, Kongiu National University)
  • 강인규 (공주대학교 식품공학과 및 공주대학교 식품과학연구소) ;
  • 인만진 (청운대학교 식품영양학과) ;
  • 오남순 (공주대학교 식품공학과 및 공주대학교 식품과학연구소)
  • Published : 2003.05.31

Abstract

A method for separating heme-iron from hemoglobin (Hgb) hydrolysate by dialysis was developed. Recovery of heme-iron increased with increasing Hgb concentration, whereas rejection of peptide and separation effciency expressed by HP ratio (heme-iron/peptide) did not show significant differences. HP ratio increased with increases in the degree of hydrolysis of Hgb and $KH_2PO_4$ concentrations of dialysis solution. Recovery of heme-iron decreased with increase in the pH of dialysis solution due to wash-out of heme-iron across the dialysis membrane caused by increase in solubility of heme-iron. Rejections of peptide were 74.5 and 87.5% (2 and 5 kDa of cut off size, respectively), whereas recovery of heme-iron decreased from 86.5 (2 kDa) to 63.1% (25 kDa). Amounts of heme-iron and peptide of dried heme-iron product were 21.7 and 77.0%, and HP ratio and production yield were 28.2 and 6.5%, respectively.

Hemoglobin(Hgb)의 가수분해물로부터 heme-iron을 분리하는데 영향을 미치는 Hgb의 농도, 가수분해도(DH, degree of hydrolysis), 투석용액의 pH, 투석막의 pore size에 대하여 조사하였다. 가수분해에 사용된 Hgb의 농도가 높아짐에 따라 heme-iron의 회수율은 증가하였으나, peptide의 제거율과 HP ratio(총 peptide 중 heme-iron이 차지하는 비율)는 Hgb의 농도에 따른 큰 차이를 볼 수 없었다. Hgb의 가수분해도가 8%, 16%, 24%로 증가함에 따라 투석에 의한 peptide의 제거가 용이하게 이루어져 HP ratio가 13.7%, 20.7%, 31%로 증가하였다. 투석용액에 $KH_2PO_4$를 25 mM이 되도록 첨가할 때는 HP ratio가 25.7%이었으나,50 mM이상의 농도에서는 30.0-32.5%로 증가하였다. 투석용액의 pH 높을수록 heme-iron의 용해도가 증가하여 투석막을 통한 heme-iron의 세출이 많아졌다. Peptide의 제거율은 투석막이 2kDa에서 5kDa로 커질 때 74.5%에서 87.5%의 큰 폭으로 증가하였으며, heme-iron의 회수율은 투석막의 크기에 따라 감소하여 2kDa에서는 86.5%, 15kDa에서는 79.6%, 25kDa에서 63.1%로 급감하였다. 투석법에 의해 분리, 건조된 heme-iron제품의 heme-iron과 peptide의 함량은 각각 21.7%와 77.0%이었으며, HP ratio는 28.2%, 수율은 6,5%이었다.

Keywords

References

  1. Knipe, C. L. (1988) In Production and use of animal blood and blood proteins for human food. EdibIe meat by-product, Advances in meat research 5, Elsevier Science Publisher. New York, USA
  2. Carpenter, C. E. and Mahoney, A. W. (1992) Contribution of heme and nonheme iron to human nutrition. Crit. Rev. Food Sci. Nutr. 31, 333-367 https://doi.org/10.1080/10408399209527576
  3. Reizenstein, P. (1980) Hemoglobin fortification of food and prevention of iron deficiency with heme iron. Acta Med. Scand. 629, 1-46
  4. Howell, N. K. and Lawrie, R. A. (1983) Functional aspects of blood plasma proteins: Separation and characterization. J. Food Techwl. 18, 747-762
  5. Tybor, P. T., Dill, C. W. and Landmann, W. A. (1975) Functional properties of protein isolated from bovine blood by a continuous pilot process. J. Food Sci. 40, 155-159 https://doi.org/10.1111/j.1365-2621.1975.tb03759.x
  6. Autio, K., Kiesvaara, M. and Malkki, Y. (1985) Method for dividing blood hemoglobin into heme and globin, U.S. Patent 4,518,525
  7. Lindroos, P. G. S. (1984) Heme concentrate and method for the preparation thereof, U.S. Patent 4,431,581
  8. Liu, X. Q., Yonekura, M., Tsutsumi, M. and Sano, Y. (1996) Physicochemical properties of aggregates of globin hydrolysates. J. Agric. Food Chem. 44, 2957-2961 https://doi.org/10.1021/jf9505786
  9. Piot, J. M., Guillochon, D., Leconte, D. and Thomas, D. (1988) Application of ultraSltration to the preparation of defined hydrolysates of bovine haemoglobin. J. Chem. Technot. Biotechnol. 42,147-156
  10. Eriksson, C. (1981) Heme iron-enriched amino acid preparation and a process for the preparation of heme iron-enriched amino acid preparations from heme proteins. EP. 0061556
  11. Lebrun, R, Bazus A., Dhulster P. and Guillochon, D. (1998) Solubility of heme in heme-iron enriched bovine hemoglobin hydrolysates. J. Agric. Food Chem. 46, 5017-5025 https://doi.org/10.1021/jf9805698
  12. Adler-Nissen, J. (1979) Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 27, 1256-1262 https://doi.org/10.1021/jf60226a042
  13. Paul, K. G., Theorell, H. and Akeson, A. (1953) The molar light absorption of pyndine ferroprotoporphyrm (Pyridine haemochromogen). Acta Chem. Scand. 7, 1284-1287 https://doi.org/10.3891/acta.chem.scand.07-1284
  14. Hjalmarsson S. and Akesson R. (1983) Modern Kjeldahl pocedure. Int. Laboratory 3, 70-76
  15. Kang, I. K., hi, M. J. and Oh, N. S. (2001) Conditions of hemoglobin hydrolysis and separation for the production of enriched heine-iron. J. Korean Soc. Agric. Chem. Bwtechnot. 44, 219-223
  16. In, M. -J., Chae, H. J. and Oh, N. -S. (2002) Process development of heme-enhched peptide by enzymatic hydrolysis of hemoglobin. Bioresource Technol. 84, 63-68 https://doi.org/10.1016/S0960-8524(02)00009-3
  17. Lebrun, R, Bazus, A., Dhulster, D. and GuiUochon, D. (1998) Influence of molecular interactions on ultrafiltration of a bovine hemoglobin hydrolysate with an organic membrane. J. Memhrane Sci. 146, 113-124 https://doi.org/10.1016/S0376-7388(98)00087-8