Emodin from Polygonum cuspidatum showed Angiogenesis Inhibiting Activity in vitro

호장근으로부터 분리된 emodin의 혈관신생 억제 활성

  • Lee, Tae-Kyoo (Division of Food Science and Nutrition, Woosuk University) ;
  • Kim, Jong-Hwa (Division of Food Science and Nutrition, Woosuk University) ;
  • So, June-No (Division of Bioscience & Biotechnology, Woosuk University)
  • 이태규 (우석대학교 식품영양 및 공학부) ;
  • 김종화 (우석대학교 식품영양 및 공학부) ;
  • 소준노 (우석대학교 생명공학부)
  • Published : 2003.02.28

Abstract

Polygonum cuspidatum has been used as a fork medicine for a long time. Emodin was purified from the root of P. cuspidatum by thin layer chromatography (TLC) and preparative high perfomance liquid chromatography (HPLC). The effects of emodin on the migration of endothelial cells and in vitro angiogenesis stimulated with vascular endothelial cell growth factor (VEGF) were examined, using human umbilical vein endothelial cells (HUVECs) and porcine pulmonary arterial endothelial cells (PPAECs). Emodin potently inhibited the VEGF-induced migration of (HUVECs) at relatively low cocentrations $(0.1-10\;{\mu}g/ml)$; the inhibition of endothelial cells by emodin was 75.4% at $0.1\;{\mu}g/ml$ and about 90% at $1\;{\mu}g/ml$. Emodin also inhibited VEGF-induced sprout formation in vitro at concentrations of $0.1-10\;{\mu}g/ml$. Emodin was also evaluated for the inhibitory potential on in vivo angiogenesis in a growing chick embryo chorioallantoic membranes (CAM). At a concentration of $1.0\;{\mu}g/ml$ Per disc, emodin was able to induce avacular zone in the CAMs. These findings suggest that emodin is a potent angiogenesis inhibitor and P. cuspidatum is a useful herb in the development of therapeutics for angiogenesis dependent diseases.

호장근에서 분리한 emodin은 VEGF로 유도된 혈관신생의 한 단계인 혈관내피세포의 이동을 강하게 억제하였다. 또한 emodin은 혈관내피세포 이동을 억제시킨 $0.1\;{\mu}g/ml$ 농도에서 시험관내 혈관신생을 억제하였으며, 그 효과는 농도의존적인 양상을 보였다. 생체내 혈관신생 모델인 CAM assay에서도 emodin은 혈관신생을 억제하였다. 이러한 결과는 emodin이 현재까지 보고된 여러 가지 생리활성 이외에 혈관신생 억제활성을 가지고 있다는 사실을 보여주는 것이다. 따라서 emodin을 함유하고 있는 호장근은 혈관신생 관련 질환에 대한 천연물 유래 치료제의 개발을 위한 중요한 식물자원으로 활용될 수 있을 것이다.

Keywords

References

  1. Vastano, B. C., Chen, Y, Zhu, N., Ho, C., Zhu, Z. and Rosen, R. T. (2000) Isolation and identification of stilbenes in two varieties of Potvgonum cuspidatum. J. Agric. Food Chem. 48, 253-256 https://doi.org/10.1021/jf9909196
  2. Jayatilake, G. S., Jayasuhya, H., Lee, E. S., Koonchanok, N.M., Geahlen, R. L., Ashendel, C. L., McLaughlin, J. L. and Chang, C. J. (1993) Kinase inhibitors from Potygonwn cuspidatum. J. Nat. Prod. 56, 1805-1810 https://doi.org/10.1021/np50100a021
  3. Chen, L., Han, Y., Yang, F. and Zhang, T. (2001) High-speed counter-current chromatography separation and purification of resveratrol and piceid from Potygonum cuspidatum. J.Chromatogr. A 907, 343-346 https://doi.org/10.1016/S0021-9673(00)00960-2
  4. Yang, F., Zhang, T. and Ito, Y. (2001) Large scale separation of resveratrol, anthraglycoside A and anthraglycoside B from Polyeonum cuspidatum. Sieb, et Zucc by high-speed countercurrent chromatography. J. Chromatogr. A 919, 443-448
  5. Jayasuhya, H., Koonchanok, N. M., Geahlen, R. L.,MacLaughlin, J. L. and Chang, C. J. (1992) Emodin, a protein kinase inhbitor from Polygonum cuspidatum. J. Nat. Prod. 55,696-698 https://doi.org/10.1021/np50083a026
  6. Xiao, K., Xuan, L., Xu, Y, Bai, D. and Zhong, D. (2002) Constituents from Potyeonum cuspidatum. Chem. Pharm. Bult.50, 605-608 https://doi.org/10.1248/cpb.50.605
  7. Kumar, A., Dhawan, S. and Aggarwal, B. B. (1998) Emodin (3-methy1-1,6,8-tnhydroxyanthraquinone) inhibits TNF-inducedNF-kB activation, IkB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncoeene 17, 913-918
  8. Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27-31 https://doi.org/10.1038/nm0195-27
  9. Friesel, R. E. and Maciag, T. (1995) Molecular mechanism of angiogenesis: fibroblast growth factor signal transduction. FASEB J. 9, 919-925 https://doi.org/10.1096/fasebj.9.10.7542215
  10. GrifBoen, A. W. and Molema, G. (2000) Angiogenesis:Potentials for pharmacologic intervention in the treatment of c ancer, cardiovascular diseases, and chronic inflammation.PharmacoI. Rev. 52, 237-268
  11. Fife, R. S., G. Sledge, W., Sissons, Jr. S. and B. Zerler (2000) Effects of tetracyclines on angiogenesis in vitro. Cancer Lett. 153, 75-78 https://doi.org/10.1016/S0304-3835(00)00348-7
  12. Rajkumar, S.V. and Witzig, T. E. (200) A review of angiogenesis and antiangiogenic therapy with thalidomide in multiple myeloma. Cancer treatment Rev. 26, 351-362 https://doi.org/10.1053/ctrv.2000.0188
  13. Kwak, H. J., So, J. N., Lee, S. J., Kim, I. and Koh, G. Y. (1999) Angiopoietin-l is an apoptosis survival factor for endothelial cells. FEBS Lett. 448, 249-253 https://doi.org/10.1016/S0014-5793(99)00378-6
  14. Isaji, M., Miyata, H., Ajisawa, Y, Takehana, Y. and Yoshimura, N. (1997) Tranilast inhibits the proliferation, chemotaxis and tube formation of human microvascular endothelial cells in vitro and angiogenesis in vivo. Br. J. Pharmacot. 122, 1061-1066 https://doi.org/10.1038/sj.bjp.0701493
  15. Nehls, V. and Drenkhahn, D. (1995), A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Micmvascutar Res. 50, 311-322
  16. Kim, I., Kim, H. G., Moon, S. 0., Chae, S. W., So, J. N., Koh, K. N., Ahn, B. C. and Koh, G. Y. (2000) Angiopoietin-l induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ. Res. 86, 952-959 https://doi.org/10.1161/01.RES.86.9.952
  17. Cao, R, Wu, H., Veitonmaki, N., Linden, R, Famebo, J., Shi, G. and Cao, Y. (1999) Suppression of angiogenesis and tumor groth by the inhibitor K1-5 generated by plasmm-mediated proteolysis. Proc. Natt. Acad. Sci. USA 96, 5728-5733
  18. Davis, G. E., Bayless, K. J. and Mavila, A. (2002) Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat. Rec. 268, 252-275 https://doi.org/10.1002/ar.10159
  19. Mueller, S. 0., Schmia, M., Dekant, W., Syopper, H., Schlatter, J., Schreier, P. and Lutz, W. K. (1999) Occun-ence of emodm, ch rysophanol and physcion in vegetables, herbs, and liquors;Ge notoxicity and anti-genotoxicity of the anthraquinones andthe whole plants. Food Chem. Toxicol. 37, 481-491 https://doi.org/10.1016/S0278-6915(99)00027-7
  20. Choi, J. C., Chung, H. Y, Jung, H. A., Park, H. J. and Yokozawa, T. (2000) Comparative evaluation of antioxidant potential of a1atemin(2-hydroxyemodin) and emodin. J. Agric. Food Chem. 48, 6347-6351 https://doi.org/10.1021/jf000936r
  21. Agarwal, S. K., Singh, S. S., Verma, S. and Kumar, S. (2000) Antifungal activity of anthraqumone derivatives from Rhewn enwdi. J. EthnopharmacoI. 72, 43-46 https://doi.org/10.1016/S0378-8741(00)00195-1
  22. Kuo, Y. C., Tsai, W. J., Meng, H. C., Chen, W. R, Yang, L. Y. Lin, C. Y. (2001) Immune responses in human mesangial cells regulated by emodin from Potygonum hypoIeucum Ohwi. Life Sci. 68, 1271-1286 https://doi.org/10.1016/S0024-3205(00)01033-X
  23. Kuo, Y. C., Meng, H. C. and Tsai, W. J. (2001) Regulation of cell proliferation, inflammatory cytokine production and calcium mobilization in primary human T lymphocytes by emodin from PoIygonum hypoteucum Ohwi. Inftamm. Res. 50,73-82 https://doi.org/10.1007/s000110050727
  24. Weng, W. C. and Sheu, S. J. (2000) Separation of anthraquinones by capillary electrophoresis and high- performance liquid chromatography. J. high Resot. Chromato'gr. 23, 143-148 https://doi.org/10.1002/(SICI)1521-4168(20000201)23:2<143::AID-JHRC143>3.0.CO;2-U
  25. Koyama, J., Morita, I., Tagahara, K., Bakari, J. and Aqil, M. (2002) Capillary electrophoresis of anthraquinones from Cassia siamea. Chem. Pharm. Butt. 50, 1103-1105 https://doi.org/10.1248/cpb.50.1103
  26. Pecere, T., Gazzola, M. V., Mucignat, C., Parolin, C., Vecchia, D. R, Cavaggioni, A., Basso, G., Diaspro, A., Salvato, B.,Carli, M.-and Palu, G. (2000) Aloe-emodin is a new type of andcancer agent with selective activity against neuroectodennal tumors. Cancer Res. 60,. 2800-2804