Effects of Liriodenine on Dopamine Biosynthesis in PC12 Cells

Liriodenine이 PC12 세포중의 Dopamine 생합성에 미치는 영향

  • Jin, Chun-Mei (College of Pharmacy, and Research Center Bioresource and Health, Chungbuk National University) ;
  • Lee, Jae-Joon (College of Pharmacy, and Research Center Bioresource and Health, Chungbuk National University) ;
  • Yin, Shou-Yu (College of Pharmacy, and Research Center Bioresource and Health, Chungbuk National University) ;
  • Kim, Yu-Mi (College of Pharmacy, and Research Center Bioresource and Health, Chungbuk National University) ;
  • Kim, Young-Kyoon (College of Forest Science, Kookmin University) ;
  • Rhu, Shi-Yong (Korea Research Institute of Chemical Technology) ;
  • Lee, Myung-Koo (College of Pharmacy, and Research Center Bioresource and Health, Chungbuk National University)
  • 김춘매 (충북대학교 약학대학, 생물건강산업개발연구센터) ;
  • 이재준 (충북대학교 약학대학, 생물건강산업개발연구센터) ;
  • 윤수옥 (충북대학교 약학대학, 생물건강산업개발연구센터) ;
  • 김유미 (충북대학교 약학대학, 생물건강산업개발연구센터) ;
  • 김영균 (국민대학교 임산공학과) ;
  • 유시용 (한국화학연구원) ;
  • 이명구 (충북대학교 약학대학, 생물건강산업개발연구센터)
  • Published : 2003.03.30

Abstract

The effects of liriodenine, an aporphine isoquinoline alkaloid, on dopamine content in PCl2 cells were investigated. Treatment of PC12 cells with liriodenine decreased dopamine content in a dose-dependent manner (33.6% inhibition at $10\;{\mu}M$ for 12 h). The $IC_{50}$ in value of liriodenine was $8.4\;{\mu}M$. Dopamine content decreased at 3 h and reached a minimal level at 12 h after the exposure to liriodenine. Under these conditions, the activities of tyrosine hydroxylase and aromatic L-amino acid decarboxylase were also inhibited at $10\;{\mu}M$ of liriodenine by 10.1% and 20.2% relative to control, respectively. In addition, liriodenine inhibited the increase in dopamine content induced by L-DOPA Treatments $(50-100\;{\mu}M)$ in PC12 cells. These results suggest that liriodenine inhibited dopamine biosynthesis and L-DOPA-induced increase in dopamine content by reducing the activities of tyrosine hydroxylase and aromatic L- amino acid decarboxylase in PC12 cells.

Keywords

References

  1. Kim, Y. K and Rhu, S. Y (1999) Cytotoxic components from stem bark of Magnolia ovobata. Planta Med. 65: 291-292 https://doi.org/10.1055/s-2006-960784
  2. Nagatsu, T., Levitt, M. and Udenfriend, S. (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J. Biol. Chem. 239: 2910-2917
  3. Greene, L. A and Rein, G. (1977) Short-term regulation of catecholamine biosynthesis in a nerve growth factor responsive clonal line of rat pheochromocytoma cells. J. Neurochem. 30: 549-555
  4. Greene, L. A. and Tischler, A. S. (1982) PC12 pheochromocytoma cultures in neurobiological research: In Advance in Cellular Neurobiology. vol. 3 (ed. Feroroff S.), 373. Academic Press. New York, NY
  5. Lee, M. K and Kim, H. S. (1996) Inhibitory effects of protoberberine alkaloids from the root of Coptis japonica on catecholamine biosynthesis in PC12 cells. Planta Med. 62: 31-34 https://doi.org/10.1055/s-2006-957791
  6. Kim, S. H., Shin, J. S., Lee, J. J., Yin, S. Y, Kai, M. and Lee, M. K (2001) Effects of hydrastine derivatives on dopamine biosynthesis in PC12 cells. Planta Med. 67: 609-613 https://doi.org/10.1055/s-2001-17356
  7. Shin, J. S., Kim, K T. and Lee, M. K (1998) Inhibitory effects of bulbocapnine on dopamine biosynthesis in PC12 cells. Neurosci. Lett. 244: 161-164 https://doi.org/10.1016/S0304-3940(98)00148-7
  8. Lee, M. K. and Zhang, Y. H. (1996) Inhibition of tyrosine hydroxylase by berberine. Med. Sci. Res. 24: 561-562
  9. Lee, M. K, Zhang, Y. H. and Kim. H. S. (1996) Inhibition of tyrosine hydroxylase by palmatine. Arch. Pharm. Res. 19: 258-260 https://doi.org/10.1007/BF02976236
  10. Lee, M. K, Zhang, Y. H., Shin, J. S. and Lee, S. S. (1997) Inhibition of tyrosine hydroxylase by hydrastine. Med. Sci. Res. 25: 619-620
  11. Zhang, Y. H., Shin, J. S., Lee, S. S., Kim, S. H. and Lee, M. K. (1997) Inhibition of tyrosine hydroxylase by bulbocapnine. Planta Med. 63: 362-363 https://doi.org/10.1055/s-2006-957702
  12. Mitsui, A, Nohta, H. and Ohkura, Y. (1984) High-performance liquid chromatography of plasma catecholamines using 1,2-diphenylethylenediamine as precolumn fluorescence derivatization reagent. J. Chromatogr. 344: 61-70
  13. Lee, M. K, Nohta, H. and Ohkura, Y (1986) Occurrence of aromatic L-amino acid decarboxylase in human plasma and its assay by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. 378: 329-336 https://doi.org/10.1016/S0378-4347(00)80729-X
  14. Nagatsu, T., Oka, K. and Kato, T. (1979) Highly sensitive assay for tyrosine hydroxylase activity by high-performance liquid chromatography. J. Chromatogr. 163: 247-252 https://doi.org/10.1016/S0378-4347(00)81411-5
  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
  16. Chen, K. S., Ko, F. N., Teng, C. M. and Wu, Y. C. (1996) Antiplatelet and vasorelaxing actions of some aporphinoids. Planta Med. 62: 133-136 https://doi.org/10.1055/s-2006-957835
  17. Chang, K. C., Su, M. J., Peng, Y. I., Shao, C. C., Wu, Y. C. and Tseng, Y. Z. (2001) Mechanical effects of liriodenine on the left ventricular-arterial coupling in water rats: pressurestroke volume analysis. Brit. J. Pharmacal. 133: 29-36 https://doi.org/10.1038/sj.bjp.0704036
  18. Basma, A. N., Morris, E. J., Nicklas, W. J. and Geller, H. M. (1995) L-DOPA cytotoxicity to PC12 cells in culture is via its autoxidation. J Neurochem. 64: 825-832 https://doi.org/10.1046/j.1471-4159.1995.64020825.x