Crude Extract of Zizyphi Jujube Semen Protects Kainic Acid-induced Excitotoxicity in Cultured Rat Neuronal Cells

  • Park, Jeong-Hee (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Ban, Ju-Yeon (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Joo, Hyun-Soo (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Song, Kyung-Sik (College of Agriculture and Life-Sciences, Kyungpook National University) ;
  • Bae, Ki-Whan (College of Pharmacy, Chungnam National University) ;
  • Seong, Yeon-Hee (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
  • Published : 2003.12.01

Abstract

Zizypus is one of the herbs widely used in Korea and China due to CNS calming effect. The present study aims to investigate the effect of the methanol extract of Zizyphi Jujube Semen (ZJS) on kainic acid (KA)-induced neurotoxicity in cultured rat cerebellar granule neuron. ZJS, over a concentration range of 0.05 to $5\;{\mu]g/ml$, inhibited KA $(500\;{\mu}M)-induced$ neuronal cell death, which was measured by a trypan blue exclusion test and a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay. Pretreatment of ZJS $(0.5\;{\mu}g/ml)$ inhibited KA$(50\;{\mu}M)$-induced elevation of cytosolic calcium concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, Fura 2-AM, and generation of reactive oxygen species (ROS). ZJS $(0.5\;{\mu}g/ml)$ inhibited glutamate release into medium induced by KA $(500\;{\mu}M)$, which was measured by HPLC. These results suggest that ZJS prevents KA-induced neuronal cell damage in vitro.

Keywords

References

  1. Adzu, B., Amos, S., Dzarma, S., Wambebe, C. and Gamaniel, K., Effect of Zizzyphus spina-christi Wild aqueous extract on the central nervous system in mice. J. Ethnopharm., 79, 13-16 (2002) https://doi.org/10.1016/S0378-8741(01)00348-8
  2. Arias, C., Montiel, T. and Rapia, R, Transmitter release in hippocampal slices from rats with limbic seizures produced by systemic administration of kainic acid. Neurochem. Res., 15, 641-646 (1990) https://doi.org/10.1007/BF00973756
  3. Baltrons, M. A, Saadoun, S., Agullo, L. and Garcia, A, Regulation by calcium of the nitric oxide/cyclic GMP system in cerebellar granule cells and astroglia in culture. J. Neurosci. Res., 49, 333-341 (1997) https://doi.org/10.1002/(SICI)1097-4547(19970801)49:3<333::AID-JNR8>3.0.CO;2-D
  4. Berridge, M. V. and Tan, A S., Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2,5-diphenyltetrazotium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys., 303, 474-482 (1993) https://doi.org/10.1006/abbi.1993.1311
  5. Ben-Ari, Y., Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy, Neuroscience, 14, 375-403 (1985) https://doi.org/10.1016/0306-4522(85)90299-4
  6. Bondy, S. C. and Lee, D. K., Oxidative stress induced by glutamate receptor agonists. Brain Res., 610, 229-233 (1993) https://doi.org/10.1016/0006-8993(93)91405-H
  7. Brorson, J. R., Manzolillo, P. A. and Miller, R. J., $Ca^{2+}$ entry via AMPA/KA receptor and excitotoxicity in cultured cerebellar Purkinje cells. J. Neurosci., 14, 187-197 (1994)
  8. Carroll, F. Y., Cheung, N. S. and Beart, P. M., Investigations of non-NMDA receptor-induced toxicity in serum-free antioxidantrich primary cultures of murine cerebellar granule cells. Neurochem. Int. 33, 23-28 (1998) https://doi.org/10.1016/S0197-0186(05)80004-X
  9. Choi, D. W., Excitotoxic cell death. J. Neurobiol., 23, 1261-1276 (1992) https://doi.org/10.1002/neu.480230915
  10. Choi, D. W., Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Letts., 58, 293-297 (1985) https://doi.org/10.1016/0304-3940(85)90069-2
  11. Chopra, R. N., Nayar, S. L. and Chopra, I. C, Glossary of Indian Medicinal Plants. CSIR, New Delhi, p. 261, (1956)
  12. Coyle, J. T. and Puttfarcken, P., Oxidative stress, glutamate and neurodegenerative disorders. Science, 262, 689-694 (1993) https://doi.org/10.1126/science.7901908
  13. Drian, M. J., Kamenka, J. M. and Privat, A, In vitro neuroprotection against glutamate toxicity provided by novel non-competitive N-methyl-D-aspartate antagonists. J. Neurosci. Res., 57, 927-934 (1999) https://doi.org/10.1002/(SICI)1097-4547(19990915)57:6<927::AID-JNR18>3.0.CO;2-C
  14. Duffy, S. and MacViar, B. A, In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J. Neurosci., 16,71-81 (1996)
  15. Dykens, J. A., Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated $Ca^{2+}$ and $Na^+$ : implications for neurodegeneration. J. Neurochem., 63, 584-591 (1994) https://doi.org/10.1046/j.1471-4159.1994.63020584.x
  16. Ellison, D. W., Beal, M. F. and Martin, J. B., Amino acid neurotransmitters in postmortem human brain analyzed by high performance liquid chromatography with electro-ehemical detection. J. Neurosci., 19, 305-315 (1987)
  17. Giusti, P., Franceschini, D., Petrone, D., Manev, H. and Floreani, M., In vitro and in vivo protection against kainate-induced excitotoxicity by melatonin. J. Pineal Res., 20, 226-231 (1996) https://doi.org/10.1111/j.1600-079X.1996.tb00263.x
  18. Gunasekar, P. G., Sun, P. W., Kanthasamy, A. G., Borowitz, J. L. and Isom, G. E., Cyanide-induced neurotoxicity involves nitric oxide and reactive oxygen species generation after N-MethylD- aspartate receptor activation. J. Pharmacol. Exp. Ther., 277, 150-155 (1996)
  19. Han, B. H. and Park, M. H., Folk Medicine. American Chemical Society, Washington D.C., p. 205 (1986)
  20. Jensen, J. B., Schousboe, A. and Pickering, D. S., AMPA receptor mediated excitotoxicity in neocortical neurons is developmentally regulated and dependent upon receptor desensitization. Neurochem. lnt., 32, 505-513 (1998) https://doi.org/10.1016/S0197-0186(97)00130-7
  21. Kim, S. D., Oh, S. K., Kim, H. S. and Seong, Y. H., Inhibitory effect of fangchinoline on excitatory amino acids-induced neurotoxicity in cultured rat cerebellar granule cells. Arc. Pharm. Res., 24, 164-170 (2001) https://doi.org/10.1007/BF02976485
  22. Koh, J. Y, Goldberg, M. P., Hartley, D. M. and Choe, D. W., Non-NMDA receptor-mediated neurotoxicity in cortical culture. J. Neurosci., 10, 693-705 (1990)
  23. Larm, J. A., Beart, P. M. and Cheung, N. S., Neurotoxin domoic acid produces cytotoxicity via kainite- and AMPA-sensitive receptors in cultured cortical neurons. Neurochem. Ini., 31, 677-682 (1997) https://doi.org/10.1016/S0197-0186(97)00030-2
  24. Lesort, M., Esclaire, F., Yardin, C. and Hugon, J., NMDA induces apoptosis and necrosis in neuronal cultures. Increased APP immunoreactivity is linked to apoptotic cells. Neurosci. Letts., 221, 213-216 (1997) https://doi.org/10.1016/S0304-3940(96)13310-3
  25. Manev, H., Costa, E., Wroblewski, J. T. and Guidotti, A., Abusive stimulation of excitatory amino acid receptor: a strategy to limit neurotoxicity. FASEB J., 4, 2789-2797 (1990) https://doi.org/10.1096/fasebj.4.10.2165013
  26. Matsuda, H., Murakami, T., Ikebata, A., Yamahara, J. and Yoshikawa, M., Bioactive saponins and glycosides. XIV Structure elucidation and immunological adjuvant activity of novel protojujubogenin type triterpene bisdesmodides, protojujubosides A, B and BI, from the seeds of Zizyphus jujuba var. spinosa (Zizyphi Spinosi Semen). Chern. Pharm. Bull., 47, 1744-1748 (1999) https://doi.org/10.1248/cpb.47.1744
  27. Mei, J. M., Chi, W. M., Trump, B. F. and Eccles, C. U., Involvement of nitric oxide in the deregulation of cytosolic calcium in cerebellar neurons during combined glucose-oxygen deprivation. Mol. Chem. Neuropathol., 27, 155-166 (1996) https://doi.org/10.1007/BF02815091
  28. Nicholls, D. G. and Budd, S. L., Mitochondria and neuronal survival. Physiol. Rev., 80, 315-360 (2000) https://doi.org/10.1152/physrev.2000.80.1.315
  29. Pereira, C. F. and Oliveira, C. R., Oxidative glutamate toxicity involves mitochondrial dysfunction and perturbation of intracellular $Ca^{2+}$ homeostasis. Neurosci. Res., 37, 227-236 (2000) https://doi.org/10.1016/S0168-0102(00)00124-3
  30. Regan, R. F. and Choi, D. W., The effect of NMDA, AMPA/kainite, and calcium channel antagonists on traumatic cortical neuronal injury in culture. Brain Res., 633, 236-242 (1994) https://doi.org/10.1016/0006-8993(94)91544-X
  31. Rothman, S. M. and Olney, J.W., Glutamate and the phathophysiology of hypoxic-ischemic brain damage. Ann. Neurol., 19, 105-111 (1986) https://doi.org/10.1002/ana.410190202
  32. Simonian, N. A., Getz, R. L., Leveque, J. C, Konrake, C. and Coyle, J. T., Kainic acid induces apoptosis in neurons. Neuroscience, 75,1047-1055 (1996) https://doi.org/10.1016/0306-4522(96)00326-0
  33. Solum, D., Hughes, D., Major, M. S. and Parks, T. N., Prevention of normally occurring and deafferentation-induced neuronal death in chick brainstem auditory neurons by periodic blockade of AMPA/kainite receptors. J. Neurosci., 17,4744-4751 (1997)
  34. Sperk, G., Kainic acid seizures in the rat. Prog. Neurobiol, 42, 1-32 (1994) https://doi.org/10.1016/0301-0082(94)90019-1
  35. Van Vliet, B. J., Sebben, M., Dumuis, A., Gabrion, J., Bockaert, J. and Pin, J. P., Endogenous amino acid release from cultured cerebellar neuronal cells: Effect of tetanus toxin on glutamate release. J. Neurochem., 52, 1229-1230 (1989) https://doi.org/10.1111/j.1471-4159.1989.tb01870.x
  36. Weiss, J. H., Hartley, D. M., Koh, J. and Choi, D. W., The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity. Science 247, 1474-1477 (1990) https://doi.org/10.1126/science.2157282
  37. Weiss, J. H. and Sensi, S. L.,$Ca^{2+}-Zn^{2+}$ permeable AMPA or kainite receptors: possible key factors in selective neurodegeneration, Trends Neurosci., 23, 365-371 (2000) https://doi.org/10.1016/S0166-2236(00)01610-6
  38. Whit, R. J. and Reynolds, I. J., Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxic exposure. J. Neurosci., 16, 5688-5697 (1996)