DOI QR코드

DOI QR Code

Characterization of Vanadium Oxide Supported on Zirconia and Modified with MoO3

  • Sohn, Jong-Rack (Dept. of Industrial Chemistry, Engineering College, Kyungpook National University) ;
  • Seo, Ki-Cheol (Dept. of Industrial Chemistry, Engineering College, Kyungpook National University) ;
  • Pae, Young-Il (Dept. of Chemistry, University of Ulsan)
  • Published : 2003.03.20

Abstract

Vanadium oxides supported on zirconia and modified with MoO₃were prepared by adding Zr(OH)₄powder into a mixed aqueous solution of ammonium metavanadate and ammonium molybdate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed using FTIR, Raman spectroscopy and solid-state $^{51}V$ NMR. In the case of a calcination temperature of 773 K, for samples containing low loading of $V_2O_5$, below 15 wt %, vanadium oxide was in a highly dispersed state, while for samples containing high loading of $V_2O_5$, equal to or above 15 wt %, vanadium oxide was well crystallized because the $V_2O_5$ loading exceeded the formation of a monolayer on the surface of $ZrO_2$. The $ZrV_2O_7$ compound was formed through the reaction of $V_2O_5\;and\;ZrO_2$ at 873 K and the compound decomposed into $V_2O_5\;and\;ZrO_2$ at 1073 K, which were confirmed by FTIR spectroscopy and solid-state $^{51}V$ NMR. IR spectroscopic studies of ammonia adsorbed on $V_2O_5-MoO_3/ZrO_2$ showed the presence of both Lewis and Bronsted acids.

Keywords

References

  1. Argyle, M. D.; Chen, K.; Bell, A. T.; Iglesia, E. J. Catal. 2002, 208, 139. https://doi.org/10.1006/jcat.2002.3570
  2. Miyata, H.; Kohno, M.; Ono, T.; Ohno, T.; Hatayama, F. J. Chem. Soc., Faraday Trans. 1 1989, 85, 3663. https://doi.org/10.1039/f19898503663
  3. Lakshmi, L. J.; Ju, Z.; Alyea, E. Langmuir 1999, 15, 3521. https://doi.org/10.1021/la981103m
  4. Bulushev, D. A.; Kiwi-Minsker, L.; Zaikovskii, V. I.; Renken, A. J. Catal. 2000, 193, 145. https://doi.org/10.1006/jcat.2000.2872
  5. Feng, T.; Vohs, J. M. J. Catal. 2002, 208, 301. https://doi.org/10.1006/jcat.2002.3587
  6. Busca, G.; Elmi, A. S.; Forzatti, P. J. Phys. Chem. 1987, 91, 5263. https://doi.org/10.1021/j100304a026
  7. Narayama, K. V.; Masthan, S. K.; Rao, V. V.; Raju, B. D.; Rao, P. K. Catal. Commun. 2002, 3, 173. https://doi.org/10.1016/S1566-7367(02)00072-9
  8. Jung, S. M.; Grange, P. Appl. Catal. B : Environmental 2001, 32, 1230.
  9. Alemany, L. J.; Lietti, L.; Ferlazzo, N.; Forzatti, P.; Busca, G.; Giamello, E.; Bregani, F. J. Catal. 1995, 155, 117.
  10. Centeno, M. A.; Malet, P.; Carrizosa, I.; Odriozola, J. A. J. Phys. Chem. B 2000, 104, 3310. https://doi.org/10.1021/jp993084a
  11. Matralis, H. M.; Ciardelli, M.; Ruwet, M.; Grange, P. J. Catal. 1995, 157, 368. https://doi.org/10.1006/jcat.1995.1302
  12. Elmi, A. S.; Tronoconi, E.; Cristiani, C.; Martin, J. P. G.; Forzatti, P. Ind. Eng. Chem. Res. 1989, 84, 387.
  13. Lapina, O. B.; Shubin, A. A.; Nosov, A. V.; Bosch, E.; Spengler, J.; Knozinger, H. J. Phys. Chem. B 1999, 103, 7599. https://doi.org/10.1021/jp991405c
  14. Gao, X.; Jehng, J.-M.; Wachs, I. E. J. Catal. 2002, 209, 43. https://doi.org/10.1006/jcat.2002.3635
  15. Hatayama, F.; Ohno, T.; Maruoka, T.; Ono, T.; Miyata, H. J. Chem. Soc., Faraday Trans. 1991, 87, 2629. https://doi.org/10.1039/ft9918702629
  16. Reddy, B. M.; Ganesh, I.; Reddy, E. P.; Fernandez, A.; Smirniotis, P. G. J. Phys. Chem. B 2001, 105, 6227. https://doi.org/10.1021/jp010763o
  17. Centi, G.; Pinelli, D.; Trifiro, F.; Ghoussoub, D.; Guelton, M.; Gengembre, L. J. Catal. 1991, 130, 238. https://doi.org/10.1016/0021-9517(91)90107-F
  18. Li, M.; Shen, J. J. Catal. 2002, 205, 248. https://doi.org/10.1006/jcat.2001.3459
  19. Scharf, U.; Schraml-Marth, M.; Wokaun, A.; Baiker, A. J. Chem. Soc., Faraday Trans. 1 1991, 87, 3299. https://doi.org/10.1039/ft9918703299
  20. Monaci, R.; Rombi, E.; Solinas, V.; Sorrentino, A.; Santacesania, E.; Colon, G. Appl. Catal. A: General 2001, 214, 203. https://doi.org/10.1016/S0926-860X(01)00498-7
  21. Sohn, J. R.; Park, M. Y.; Pae, Y. I. Bull. Korean Chem. Soc. 1996, 17, 274.
  22. Sohn, J. R.; Kim, J. G.; Kown, T. D.; Park, E. H. Langmuir 2002, 18, 1666. https://doi.org/10.1021/la011304h
  23. Ward, D. A.; Ko, E. I. J. Catal. 1994, 150, 18. https://doi.org/10.1006/jcat.1994.1319
  24. Hassan, El-B.; Mun, S. P. J. Ind. Eng. Chem. 2002, 8, 359.
  25. Hsu, C. Y.; Heimbuch, C. R.; Armes, C. T.; Gates, B. C. J. Chem. Soc. Chem. Commun. 1992, 1645.
  26. Wan, K. T.; Khouw, C. B.; Davis, M. E. J. Catal. 1996, 158, 311. https://doi.org/10.1006/jcat.1996.0030
  27. Iglesia, E.; Soled, S. L.; Kramer, G. M. J. Catal. 1993, 144, 238. https://doi.org/10.1006/jcat.1993.1327
  28. Ebitani, K.; Konishi, J.; Hattori, H. J. Catal. 1991, 130, 257. https://doi.org/10.1016/0021-9517(91)90108-G
  29. Vaudagna, S. R.; Comelli, R. A.; Canavese, S. A.; Figoli, N. S. J. Catal. 1997, 169, 389. https://doi.org/10.1006/jcat.1997.1690
  30. Zhao, B.; Wang, X.; Ma, H.; Tang, Y. J. Mol. Catal. A:Chemical 1996, 108, 167.
  31. Larsen, G.; Lotero, E.; Parra, R. D. in Proc. 11th Int. Congr. Catal. 1996, 543.
  32. Kera, Y.; Hirota, K. J. Phys. Chem. 1969, 73, 3937.
  33. Cole, D. J.; Cullis, C. F.; Hucknall, D. J. J. Chem. Soc. Faraday Trans. 1 1976, 72, 2185. https://doi.org/10.1039/f19767202185
  34. Sohn, J. R.; Cho, S. G.; Pae, Y. I.; Hayashi, S. J. Catal. 1996, 159, 170. https://doi.org/10.1006/jcat.1996.0076
  35. Park, E. H.; Lee, M. H.; Sohn, J. R. Bull. Korean Chem. Soc. 2000, 21, 913.
  36. Sohn, J. R.; Doh, I. J.; Pae, Y. I. Langmuir 2002, 18, 6280. https://doi.org/10.1021/la020223y
  37. Mori, K.; Miyamoto, A.; Murakami, Y. J. Chem. Soc., Faraday Trans. 1 1987, 83, 3303. https://doi.org/10.1039/f19878303303
  38. Bjorklund, R. B.; Odenbrand, C. U. I.; Brandin, J. G. M.; Anderson, L. A. H.; Liedberg, B. J. Catal. 1989, 119, 187. https://doi.org/10.1016/0021-9517(89)90145-0
  39. Highfield, J. G.; Moffat, J. B. J. Catal. 1984, 88, 177. https://doi.org/10.1016/0021-9517(84)90062-9
  40. Roozeboom, F.; Mittelmelijer-Hazeleger, M. C.; Moulijn, J. A.; Medema, J.; de Beer, U. H. J.; Gelling, P. J. J. Phys. Chem. 1980, 84, 2783. https://doi.org/10.1021/j100458a023
  41. Desikan, A. N.; Huang, L.; Oyama, S. T. J. Phys. Chem. 1991, 95, 10050. https://doi.org/10.1021/j100177a080
  42. Liu, Z.; Chen, Y. J. Catal. 1998, 177, 314. https://doi.org/10.1006/jcat.1998.2123
  43. Dines, T. J.; Rochester, C. H.; Ward, A. M. J. Chem. Soc. Faraday Trans. 1 1991, 87, 653. https://doi.org/10.1039/ft9918700653
  44. Dufresne, P.; Payen, E.; Grimblot, J.; Bonnelle, J. P. J. Phys. Chem. 1981, 85, 2344. https://doi.org/10.1021/j150616a010
  45. Hu, H.; Wachs, I. E. J. Phys. Chem. 1995, 99, 10897. https://doi.org/10.1021/j100027a034
  46. Ramis, G.; Cristiani, C.; Forzotti, P.; Busca, G. J. Catal. 1990, 124, 574. https://doi.org/10.1016/0021-9517(90)90207-Z
  47. Schild, C. H.; Wokaun, A.; Köppel, R. A.; Baiker, A. J. Catal. 1991, 130, 657. https://doi.org/10.1016/0021-9517(91)90145-T
  48. Scheithauer, M.; Grasselli, R. K.; Knozinger, H. Langmuir 1998, 14, 3019. https://doi.org/10.1021/la971399g
  49. Eckert, H.; Wachs, I. E. J. Phys. Chem. 1989, 93, 6796. https://doi.org/10.1021/j100355a043
  50. Reddy, B. M.; Reddy, E. P.; Srinivas, S. T.; Mastikhim, V. M.; Nosov, N. V.; Lapina, O. B. J. Phys. Chem. 1992, 96, 7076. https://doi.org/10.1021/j100196a043
  51. Le Costumer, L. R.; Taouk, B.; Le Meur, M.; Payen, E.; Guelton, M.; Grimblot, J. J. Phys. Chem. 1998, 92, 1230. https://doi.org/10.1021/j100316a044
  52. Larsen, G.; Lotero, E.; Petkovic, L. M.; Shobe, D. S. J. Catal. 1997, 169, 67. https://doi.org/10.1006/jcat.1997.1698
  53. Afanasiev, P.; Geantet, C.; Breysse, M.; Coudurier, G.; Vedrine, J. C. J. Chem. Soc., Faraday Trans. 1 1994, 190, 193.
  54. Larrubia, M. A.; Ramis, G.; Busca, G. Appl. Catal. B: Environmental 2000, 27, L145. https://doi.org/10.1016/S0926-3373(00)00150-8
  55. Satsuma, A.; Hattori, A.; Mizutani, K.; Furuta, A.; Miyamoto, A.; Hattori, T.; Murakami, Y. J. Phys. Chem. 1988, 92, 6052. https://doi.org/10.1021/j100332a042

Cited by

  1. Raman Spectrum of Vanadium-Zirconia Yellow Pigment vol.47, pp.2, 2014, https://doi.org/10.1080/00387010.2013.782049
  2. Influence of phase composition and textural features of ZnMoO4–MoO3 systems on the photocatalytic degradation of methyl red vol.53, pp.7, 2017, https://doi.org/10.1134/S0020168517070111
  3. Preparation and Catalytic Performance of Al2O3, TiO2 and SiO2 Supported Vanadium Based-Catalysts for C–H Activation vol.127, pp.1-2, 2009, https://doi.org/10.1007/s10562-008-9634-y