DOI QR코드

DOI QR Code

다변량 분석법에 의한 Anionic Surfactant와 Nonionic Surfactant의 동시정량

Simultaneous Determination of Anionic and Nonionic Surfactants Using Multivariate Calibration Method

  • 이상학 (경북대학교 자연과학대학 화학과) ;
  • 권순남 (경북대학교 자연과학대학 화학과) ;
  • 손범목 (경북대학교 자연과학대학 화학과)
  • Sang Hak Lee (Department of Chemistry, Kyungpook National university) ;
  • Soon Nam Kwon (Department of Chemistry, Kyungpook National university) ;
  • Bum Mok Son (Department of Chemistry, Kyungpook National university)
  • 발행 : 2003.02.20

초록

흡수 분광법에 의해 얻은 스펙트럼을 주성분분석(principal analysis, PCA) 으로 자료를 요약하여 주성분 회귀분서(principal component regression, PCR)과 부분 최소자승법(partial least squares, PLS)으로 음이온과 비이온 계면활성제(anionic and nonionic surfactant)를 동시에 정량하는 방법에 대하여 연구하였다. 두 가지 계면활성제가 서로 다른 농도로 혼합되어 있는 26개의 시료용액을 400~700 nm 범위에서 스펙트럼을 얻었고, 이를 이용하여 PCR과 PLS회귀모델을 얻었다. 두 가지 계면활성제가 서로 다른 농도로 포함된 5개의 외부검정용 시료들의 스펙트럼들을 이용해서 회귀모델의 적합성을 검정하기 위하여 외부검정용 시료의 농도를 계산하였다. 계산된 농도를 이용하여 relative standard error of prediction(RSEP$_{\alpha}$)를 구하여 회귀모델의 적합성을 검정하였다.

A spectrophotometric method for the simultaneous determination of anionic and nonionic surfactant based on the application of multivariate calibration method such as principal component regression(PCR) and partial least squares(PLS) has been studied. The calibration models in PCR and PLS were obtained from the spectral data in the range of 400~700 nm for each standard of a calibration set of 26 standards, each containing different amounts of two surfactants. The relative standard error of prediction(RSEP$_{\alpha}$) was obtained to assess the model goodness in quantifying each analyte in a 5 validation samples which containing different amounts of two surfactants.

키워드

참고문헌

  1. Green, D. W.; Willhite, G. P. Enhanced Oil Recovery, Textbook Series; Society of Petroleum Engineers: Dallas, U.S.A., 1998; Vol. 6. https://doi.org/10.1016/S0003-2670(99)00535-8
  2. Schramm, L. L. Surfactants Fundamentals and Applications in the Petroleum Industry; Cambridge University Press: Cambridge, UK, 2000. https://doi.org/10.1016/S0003-2670(99)00535-8
  3. Austad, T.; Fjelde, I. Anal. Lett. 1992, 25, 957. https://doi.org/10.1080/00032719208020049
  4. Fjelde, I.; Austad, T. Colloids Surf. A: Physicochem. Eng. Aspects 1994, 82, 85. https://doi.org/10.1016/0927-7757(93)02598-9
  5. Miles, C. J.; Doerge, D. R.; Bajic, S. Arch. Environ. Contam. Toxicol. 1992, 22, 247. https://doi.org/10.1007/BF00213293
  6. Clark, L. B.; Rosen, R .T.; Hartmann, T. G.; Alaimo, L. H.; Louis, J. B. Hertz, C.; Ho, C. T.; Rosen, J. D. Res. J. Water Pollut. Control. Fed. 1991, 63, 104. https://doi.org/10.1016/0927-7757(93)02598-9
  7. Kim, I. A.; Sasinos, F. I.; Rishi, D. K.; Stephens, R. D.; Brown, M. A. J. Chromatogr. 1992, 589, 177. https://doi.org/10.1007/BF00213293
  8. Lakshmy, M. N.; Raaidah S. N. J. Chromatogr. A, 1998, 804, 233. https://doi.org/10.1016/S0021-9673(97)01242-9
  9. Benomar, S. H.; Clench, M. R; Allen, D. W. Anal. Chim. Acta 2001, 445, 255. https://doi.org/10.1016/0021-9673(92)80020-U
  10. standard method. https://doi.org/10.1016/S0021-9673(97)01242-9
  11. Alexander, C. J.; Richter, M. M. Anal. Chim. Acta 1999, 402, 105. https://doi.org/10.1016/S0003-2670(01)01280-6
  12. Setarehdan, S. K.; Soraghan, J. J.; Littlejohn D.; Daran, D. A. Anal. Chim. Acta 2002, 452, 35. https://doi.org/10.1016/S0003-2670(01)01446-5
  13. Capitan-Vallvey, L. F.; Navas, N.; Avidad, R.; de Orbe, I.; Berzas-Nevado, J. J. Anal. Sci. 1997, 13, 493. https://doi.org/10.1016/S0003-2670(99)00535-8
  14. Svozil, D.; Kvasnieka, A.; Pospichal, J. Chemometrics and Intel. Lab. Sys. 1997, 39, 43. https://doi.org/10.1016/S0003-2670(01)01446-5
  15. Despagne, F.; Massart, D. L. Chemometrics and Intel. Lab. Sys. 1998, 40, 145. https://doi.org/10.1016/S0169-7439(98)00030-6
  16. Tomas, V. E.; Haaland, D. M. Anal. Chem. 1990, 62, 1091. https://doi.org/10.1016/S0169-7439(97)00061-0
  17. Schindler, R.; Watkins, M.; Vonach, R.; Lendl, B.; Kellner, R. Anal. Chem. 1998, 70, 226. https://doi.org/10.1016/S0169-7439(98)00030-6
  18. Steinbock, O.; Neumann, B.; Cage, B.; Saltiel, J.; Muller, S. T.; Dalal, N. S. Anal. Chem. 1997, 69, 3707. https://doi.org/10.1021/ac00209a024
  19. Gislason, J.; Chan, H.; Sardashti, M. Appl. Spectrosc., 2001, 55, 1553. https://doi.org/10.1021/ac970415b
  20. Varmuza, K. Int. J. Mass Spectrom. Ion Processes 1992, 118, 811. https://doi.org/10.1016/0168-1176(92)85086-F
  21. Joaquim, C. G.; Leitao, J. M. M.; Costa, F. S.; Ribeiro, J. L. A. Anal. Chim. Acta, 2002, 453, 105. https://doi.org/10.1366/0003702011953793
  22. 수질오염 폐기물 공정시험 방법; 동화기술: 서울, 한국, 1992. https://doi.org/10.1016/0168-1176(92)85086-F
  23. Martens, H.; Naes, T. Multivariate Calibration; John Wiley Sons Ltd.: New York, U.S.A., 1989. https://doi.org/10.1016/S0003-2670(01)01504-5
  24. Wold, S.; Sjotrom, M. Chemometrics: Theory and Application; American Chemical Society: Washington DC, U. S. A., 1977.
  25. Joliffe, I. T. Principal Component Analysis; Springer-Verlag: New York, U.S.A., 1986.
  26. Chemometrics: Theory and Application Wold, S.;Sjotrom, M.
  27. Principal Component Analysis Joliffe, I. T.