DOI QR코드

DOI QR Code

Efficient Transdermal Penetration and Improved Stability of L-Ascorbic Acid Encapsulated in an Inorganic Nanocapsule

  • Yang, Jae-Hun (National Nanohybrid Materials Laboratory, School of Chemistry & Molecular Engineering, Seoul National University) ;
  • Lee, Sun-Young (Nanohybrid Co. Ltd., Biotechnology Incubating Center, Seoul National University) ;
  • Han, Yang-Su (Nanohybrid Co. Ltd., Biotechnology Incubating Center, Seoul National University) ;
  • Park, Kyoung-Chan (Department of Dermatology, College of Medicine, Seoul National University) ;
  • Choy, Jin-Ho (National Nanohybrid Materials Laboratory, School of Chemistry & Molecular Engineering, Seoul National University)
  • Published : 2003.04.20

Abstract

Encapsulation of L-ascorbic acid (vitamin C) within a bio-compatible layered inorganic material was achieved by coprecipitation reaction, in which the layered inorganic lattice and its intercalate of vitamin C are simultaneously formed. The nano-meter sized powders of vitamin C intercalate thus prepared was again encapsulated with silica nano-sol to form a nanoporous shell structure. This ternary nanohybrid of vitamin Clayered inorganic core-$SiO_2$ shell exhibited an enhanced storage stability and a sustained releasing of vitamin C. Furthermore, the nano-encapsulation of vitamin C with inorganic mineral was very helpful in delivering vitamin C molecules into skin through stratum corneum, facilitating transdermal penetration of vitamin C in topical application.

Keywords

References

  1. Machlin, L. J. Handbook of Vitamins, 2nd Ed.; Marcel Dekker, Inc.: 1991.
  2. Doba, T.; Burton, G. W.; Ingold, K. U. Biochim. Biophys. Acta 1985, 835, 298. https://doi.org/10.1016/0005-2760(85)90285-1
  3. Bossi, A.; Piletsky, S. A.; Piletska, E. V.; Righetti, P. G.; Turner, A. P. F. Anal Chem. 2000, 72, 4296. https://doi.org/10.1021/ac000185s
  4. Yamamoto, I.; Tai, A.; Fujinami, Y.; Sasaki, K.; Okazaki, S. J. Med. Chem. 2002, 45, 462. https://doi.org/10.1021/jm010379f
  5. Tsuchiya, H.; Bates, C. J. J. Nurt. Biochem. 1998, 9, 402. https://doi.org/10.1016/S0955-2863(98)00039-4
  6. Horino, Y.; Takahashi, S.; Miura, T.; Takahashi, Y. Life Science 2002, 71, 3031. https://doi.org/10.1016/S0024-3205(02)02142-2
  7. Gallarate, M.; Carlotti, M. E.; Trotta, M.; Bovo, S. Int. J. Pharm. 1999, 188, 233. https://doi.org/10.1016/S0378-5173(99)00228-8
  8. Austria, R.; Semenzato, A.; Bettero, A. J. Pharm. Biomed. Anal. 1997, 15, 795. https://doi.org/10.1016/S0731-7085(96)01904-8
  9. Spiclin, P.; Gasperlin, M.; Kmetec, V. Int. J. Pharm. 2001, 222, 271. https://doi.org/10.1016/S0378-5173(01)00715-3
  10. Semenzato, A.; Austria, R.; Dall'Aglio, C.; Bettero, A. J. Chromatogr. A 1995, 705, 385. https://doi.org/10.1016/0021-9673(95)00149-H
  11. Choy, J. H.; Kwak, S. Y.; Park, J. S.; Jeong, Y. J. Angew. Chem. Int. Ed. 2000, 39(22), 4042.
  12. Choy, J. H.; Kwak, S. Y.; Park, J. S.; Jeong, Y. J.; Portier, J. J. Am. Chem. Soc. 1999, 121, 1399. https://doi.org/10.1021/ja981823f
  13. Choy, J. H.; Kwak, S. Y.; Park, J. S.; Jeong, Y. J. J. Mater. Chem. 2001, 11(6), 1671. https://doi.org/10.1039/b008680k
  14. Choy, J. H.; Park, J. S.; Kwak, S. Y.; Jeong, Y. J.; Han, Y. S. Mol Cryst. & Liq. Cryst. 2000, 341, 425. https://doi.org/10.1080/10587250008026176
  15. Hwang, S. H.; Han, Y. S.; Choy, J. H. Bull. Korean Chem. Soc. 2001, 22, 1019.
  16. Riley, P. A. Cell. Mol. Biol. 1999, 45, 951.
  17. Han, W. S.; Yoo, J. Y.; Youn, S. W.; Kim, D. S.; Park, K. C.; Kim, S. Y.; Kim, K. H. J. Dermatol. Sci. 2002, 30, 10. https://doi.org/10.1016/S0923-1811(02)00044-0
  18. Kubo, I.; Kinst-Hori, I. J. Agric. Food Chem. 1999, 47, 4121. https://doi.org/10.1021/jf990201q
  19. Jimenez, M.; Chazarra, S.; Escribano, J.; Cabanes, J.; Garcia-Carmona, F. J. Agric. Food Chem. 2001, 49, 4060. https://doi.org/10.1021/jf010194h
  20. Tachibana, Y.; Kikuzaki, H.; Lajis, N. H.; Nakatani, N. J. Agric. Food Chem. 2001, 49, 5589. https://doi.org/10.1021/jf010621r
  21. Kim, D. O.; Lee, K. W.; Lee, H. J.; Lee, C. Y. J. Agric. Food Chem. 2002, 50, 3713. https://doi.org/10.1021/jf020071c
  22. Sawai, Y.; Moon, J. H. J. Agric. Food Chem. 2000, 48, 6247. https://doi.org/10.1021/jf000500b
  23. Simonsen, L.; Petersen, M. B.; Groth, L. Eur. J. Pharm. Sci. 2002, 17, 95. https://doi.org/10.1016/S0928-0987(02)00147-1
  24. Wissing, S. A.; Muller, R. H. J. Control. Release 2002, 81, 225. https://doi.org/10.1016/S0168-3659(02)00056-1
  25. Youenang Piemi, M. P.; De Luca, M.; Grossiord, J. J.; Seiller, M.; Marty, J. P. Int. J. Pharm. 1998, 171, 207. https://doi.org/10.1016/S0378-5173(98)00189-6
  26. Oil adsorption capacity was measured by KS (Korean Industrial Standard) method.

Cited by

  1. Literature Alerts vol.20, pp.6, 2003, https://doi.org/10.3109/02652040309178092
  2. A Lattice-Engineering Route to Heterostructured Functional Nanohybrids vol.6, pp.2, 2010, https://doi.org/10.1002/asia.201000578
  3. Hydroxy double salts as versatile storage and delivery matrices vol.21, pp.6, 2011, https://doi.org/10.1039/C0JM03020A
  4. Stability, transdermal penetration, and cutaneous effects of ascorbic acid and its derivatives vol.11, pp.4, 2012, https://doi.org/10.1111/jocd.12006
  5. Intercalation and Controlled Release of Bioactive Ions Using a Hydroxy Double Salt vol.51, pp.7, 2012, https://doi.org/10.1021/ie202036y
  6. Coadsorption of ascorbic acid and α-tocopherol antioxidants on partially trimethylsilylated silica surface vol.49, pp.4, 2013, https://doi.org/10.1134/S2070205113040096
  7. Intercalation of biomolecules into NiAl-NO 3 layered double hydroxide films synthesized in situ on anodic alumina/aluminium support vol.9, pp.2, 2013, https://doi.org/10.1007/s13391-012-2148-1
  8. Comprehensive characterization of polylactide-layered double hydroxides nanocomposites as packaging materials vol.22, pp.7, 2015, https://doi.org/10.1007/s10965-015-0759-6
  9. Hierarchical layered double hydroxide nanocomposites: structure, synthesis and applications vol.51, pp.15, 2015, https://doi.org/10.1039/C4CC07715F
  10. New inorganic-based nanohybrids of layered zinc hydroxide/Parkinson’s disease drug and its chitosan biopolymer nanocarriers with controlled release rate vol.86, pp.1-2, 2016, https://doi.org/10.1007/s10847-016-0642-z
  11. on Skin Inflammation vol.29, pp.5, 2017, https://doi.org/10.5021/ad.2017.29.5.548
  12. New formulation of vitamin C encapsulation by nanoliposomes: production and evaluation of particle size, stability and control release pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0493-z
  13. Layered nanomaterials for green materials vol.19, pp.17, 2009, https://doi.org/10.1039/b819094a
  14. An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres vol.20, pp.33, 2009, https://doi.org/10.1088/0957-4484/20/33/335102
  15. Enhanced Antioxidant Activity under Biomimetic Settings of Ascorbic Acid Included in Halloysite Nanotubes vol.8, pp.2, 2019, https://doi.org/10.3390/antiox8020030
  16. Fabrication, in vitro degradation and the release behaviours of poly(DL-lactide-co-glycolide) nanospheres containing ascorbic acid vol.59, pp.2, 2007, https://doi.org/10.1016/j.colsurfb.2007.05.011
  17. Human-related application and nanotoxicology of inorganic particles: complementary aspects vol.18, pp.6, 2008, https://doi.org/10.1039/b711208d
  18. Characterization and Bioavailability of Vitamin C Nanoliposomes Prepared by Film Evaporation-Dynamic High Pressure Microfluidization vol.33, pp.11, 2003, https://doi.org/10.1080/01932691.2011.629511
  19. 비수 유화법을 이용한 아스코르빅산의 안정화 vol.38, pp.4, 2003, https://doi.org/10.15230/scsk.2012.38.4.263
  20. Encapsulation of cosmetic active ingredients for topical application - a review vol.33, pp.1, 2003, https://doi.org/10.3109/02652048.2015.1115900
  21. REVIEW OF CLAY-DRUG HYBRID MATERIALS FOR BIOMEDICAL APPLICATIONS: ADMINISTRATION ROUTES vol.64, pp.2, 2003, https://doi.org/10.1346/ccmn.2016.0640204
  22. Enhancement of skin permeation of vitamin C using vibrating microneedles vol.25, pp.1, 2003, https://doi.org/10.12793/tcp.2017.25.1.15
  23. Silica-based nanosystems for therapeutic applications in the skin vol.14, pp.16, 2003, https://doi.org/10.2217/nnm-2019-0052
  24. Ascorbic Acid in Skin Health vol.6, pp.4, 2003, https://doi.org/10.3390/cosmetics6040058
  25. Biocompatible Hydrotalcite Nanohybrids for Medical Functions vol.10, pp.2, 2003, https://doi.org/10.3390/min10020172
  26. Microencapsulation of retinyl palmitate by melt dispersion for cosmetic application vol.37, pp.3, 2003, https://doi.org/10.1080/02652048.2020.1720029
  27. Electrospun Skin Tissue Engineering Scaffolds Based on Polycaprolactone/Hyaluronic Acid/L-ascorbic Acid vol.22, pp.1, 2003, https://doi.org/10.1007/s12221-021-0036-8
  28. Detachable dissolvable microneedles: intra-epidermal and intradermal diffusion, effect on skin surface, and application in hyperpigmentation treatment vol.11, pp.1, 2003, https://doi.org/10.1038/s41598-021-03503-5