DOI QR코드

DOI QR Code

Nanoparticle Ferrite Multilayers Prepared by New Self-Assembling Sequential Adsorption Method

  • Kim, Yeong-Il (Department of Chemistry, Pukyong National University) ;
  • Kang, Ho-Jun (Department of Chemistry, Pukyong National University) ;
  • Kim, Don (Department of Chemistry, Pukyong National University) ;
  • Lee, Choong-Sub (Department of Chemistry, Pukyong National University)
  • Published : 2003.05.20

Abstract

The nanoparticle magnetite of which diameter was about 3 nm was synthesized in a homogeneous aqueous solution without a template. The synthesized magnetite nanoparticle was easily oxidized to maghemite in an ambient condition. The magnetic properties of the ferrite nanoparticle show superparamagnetism at room temperature and its blocking temperature is around 93 K. Modifying the sequential adsorption method of metal bisphosphonate, we have prepared a multilayer thin film of the ferrite nanoparticle on planar substrates such as glass, quartz and Si wafer. In this multilayer the ferrite nanoparticle layer and an alkylbisphosphonate layer are alternately placed on the substrates by simple immersion in the solutions of the ferrite nanoparticle and 1, 10-decanediylbis (phosphonic acid) (DBPA), alternately. This is the first example, as far as we know, of nanoparticle/alkyl-bisphosphonate multilayer which is an analogy of metal bisphosphonate multilayer. UV-visible absorption and infrared reflection-absorption studies show that the growth of each layer is very systematic and the film is considerably optically transparent to visible light of 400-700 nm. Atomic force microscopic images of the film show that the surface morphology of the film follows that of the substrate in μm-scale image and the nanoparticle-terminated surface is differentiated from the DBPA-terminated one in nm-scale image. The magnetic properties of this ferrite/DBPA thin film are almost the same as those of the ferrite nanoparticle powder only.

Keywords

References

  1. Fendler, J. H. Nanoparticles and Nanostructured Films:Preparation, Characterization and Applications; Wiley-VCH:Weinhein, 1998.
  2. Henglein, A. Chem. Rev. 1989, 89, 1861. https://doi.org/10.1021/cr00098a010
  3. Hagfeldt, A.; Gratzel, M. Chem. Rev. 1995, 95, 49. https://doi.org/10.1021/cr00033a003
  4. Alivisatos, A. P. Science 1996, 271, 933. https://doi.org/10.1126/science.271.5251.933
  5. Nanoaprticles in Solids and Solutions; Fendler, J. H.; Dekany, I., Ed.; Kluwer Academic: Dordrecht, 1996.
  6. Adair, J. H.; Li, T.; Kido, T.; Havey, K.; Moon, J.; Mecholsky, J.;Morrone, A.; Talham, D. R.; Ludwig, M. H.; Wang, L. Mater. Sci.Eng. R 1998, R23, 139.
  7. Yang, J.; Peng, X.-G.; Zhang, Y.; Wang, H.; Li, T.- J. J. Phys.Chem. 1993, 97, 4484. https://doi.org/10.1021/j100119a037
  8. Meldrum, F. C.; Kotov, N. A.; Fendler, J. H. J. Phys. Chem. 1994, 98, 4506. https://doi.org/10.1021/j100068a006
  9. Nakaya, T.; Li, Y.-J.; Shibata, K. J. Mater. Chem. 1996, 6, 691. https://doi.org/10.1039/jm9960600691
  10. Kang, Y. S.; Lee, D. K.; Stroeve, P. Thin Solid Film. 1998, 327-329, 541. https://doi.org/10.1016/S0040-6090(98)00708-1
  11. Cassagneau, T.; Fendler, J. H. J. Phys. Chem. B 1999, 103, 1789. https://doi.org/10.1021/jp984690t
  12. Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Chem. Mater. 2001, 13, 109. https://doi.org/10.1021/cm001164h
  13. Gittins, D. I.; Susha, A. S.; Schoeler, B.; Caruso, F. Adv. Mater. 2002, 14, 508. https://doi.org/10.1002/1521-4095(20020404)14:7<508::AID-ADMA508>3.0.CO;2-T
  14. Dai, J.; Bruening, M. L. Nano Lett. 2002, 2, 497. https://doi.org/10.1021/nl025547l
  15. Brust, M.; Etchenique, E. J.; Gordillo, G. J. Chem. Commun. 1996, 1950.
  16. Musick, M. D.; Keating, C. D.; Keefe, M. H.;Nathan, M. J. Chem. Mater. 1997, 9, 1499. https://doi.org/10.1021/cm970087w
  17. Nakanishi, T.;Ohtani, B.; Uosaki, K. J. Phys. Chem. 1998, 102, 1571. https://doi.org/10.1021/jp973046w
  18. Hu, K.; Brust, M.; Bard, A. J. Chem. Mater. 1998, 10, 1160. https://doi.org/10.1021/cm970757y
  19. Brust, M.; Bethell, D.; Kiely, C. J.; Shiffrin, D. J. Langmuir 1998, 14, 5425. https://doi.org/10.1021/la980557g
  20. Sarathy, V. K.; Thomas, P. J.; Kulkarni, G. U.; Rao, C. N. R. J. Phys. Chem. 1999, 103, 399. https://doi.org/10.1021/jp983836l
  21. Gaines Jr., G. L. Insoluble Monolayers at Liquid-Gas Interfaces; Wiley Interscience: New York, 1966.
  22. Lee, H.; Kepley, L. J.; Hong, H.-G.; Mallouk, T. E. J. Am. Chem. Soc. 1988, 110, 618. https://doi.org/10.1021/ja00210a062
  23. Lee, H.; Kepley, L. J.; Hong, H.-G.; Akhter, S.; Mallouk, T. E. J. Phys. Chem. 1988, 92, 2597. https://doi.org/10.1021/j100320a040
  24. Hong, H.-G.; Sackett, D. D.; Mallouk, T. E. Chem. Mater. 1991, 3, 521. https://doi.org/10.1021/cm00015a030
  25. Yang, H. C.; Aoki, K.; Hong, H.-G.; Sackett, D. D.; Arendt, M. F.; Yau, S.-L.; Bell, C. M.; Mallouk, T. E. J. Am. Chem. Soc. 1993, 115, 11855. https://doi.org/10.1021/ja00078a025
  26. Pechy, P.; Rotzinger, F. P.; Nazeeruddin, M. K.; Kohle, O.;Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel, M. J. Chem.Soc., Chem. Commun. 1995, 65.
  27. Yan, S. G.; Hupp, J. T. J. Phys. Chem. 1996, 100, 6867. https://doi.org/10.1021/jp953180l
  28. Trammell, S. A.; Wimbish, J. C.; Odobel, F.; Gallagher, L. A.; Narula, P. M.; Meyer, T. J. J. Am. Chem. Soc. 1998, 120, 13248. https://doi.org/10.1021/ja9821854
  29. Lee, M. S.; Shim, H. K.; Kim, Y. I. Mol. Cryst. Liq. Cryst. 1998, 316, 401. https://doi.org/10.1080/10587259808044537
  30. Science and Technology of Nanostructured Magnetic Materials;Hadjipanayis, G. C.; Prinz, G. A., Eds.; Plenum: New York, 1991.
  31. Hong, H.-G.; Mallouk, T. E. Langmuir 1991, 7, 2362. https://doi.org/10.1021/la00058a065
  32. Kang, H.; Lee, C. S.; Kim, D.; Kang, Y. S.; Kim, Y. I. Bull. Korean Chem. Soc. 1998, 19, 408.
  33. Cornell, R. M.; Schwertmann, U. The Iron Oxides; VCH: NewYork, 1996; p 167.
  34. JCPDS (Joint Committee on Powder Diffraction Standards) data base 19-629 and 39-1246.
  35. Kang, H.; Lee, C. S.; Kim, D.; Kang, Y. S.; Kim, Y. I. Bull. KoreanChem. Soc. 1998, 19, 408.
  36. Azariff, L. B. The Powder Method; McGraw Hill: New York, 1958.
  37. Kommareddi, N. S.; Tata, M.; John, V. T.; McPherson, G. L.;Herman, M. F.; Lee, Y. S.; OConnor, J.; Akkara, J. A.; Kaplan, D. L. Chem. Mater. 1996, 8, 801. https://doi.org/10.1021/cm940485o
  38. Sohn, B. H.; Cohen, R. E. Chem. Mater. 1997, 9, 264. https://doi.org/10.1021/cm960339d
  39. Feltin, N.; Pileni, M. P. Langmuir 1997, 13, 3927. https://doi.org/10.1021/la960854q
  40. Zhang, L.; Papaefthymiou, G. C.; Ying, J. Y. J. Appl. Phys. 1997, 81, 6892. https://doi.org/10.1063/1.365233
  41. Lopez Perez, J. A.; Lopez Quintela, M. A.; Mira, J.; Rivas, J.; Charles, S. W. J. Phys. Chem. B 1997, 101, 8045. https://doi.org/10.1021/jp972046t
  42. Pardope, H.; Chua-anusorn, W.; St. Pierre, T. G.; Dobson, J. J. Magn. Magn. Mater. 2001, 225, 41. https://doi.org/10.1016/S0304-8853(00)01226-9
  43. Zhang, L.; Papaefthymiou, G. C.; Ying, J. Y.; J. Phys. Chem. B 2001, 105,7414. https://doi.org/10.1021/jp010174i
  44. Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. J.Am. Chem. Soc. 2001, 123, 12798. https://doi.org/10.1021/ja016812s
  45. Yadong, Y. L.; Mayers, B. T.; Xia, Y. Nano Lett. 2002, 2, 183. https://doi.org/10.1021/nl015681q
  46. Gunther, L. In Magnetic Properties of Fine Particles; Dormann, J.L.; Fiorani, D., Eds.; Wiley: New York, 1992; p 213.
  47. Cullity, B. D. In Introduction to Magnetic Materials; Addison-Wesley: Reading, MA, 1972; p 201.
  48. Chikazumi, S. Physics of Ferromagnetism; Clarendon Press:Oxford, 1997; p 153.
  49. Chien, C. L. In Science and Technology of Nanostructured Magnetic Materials; Hajipanayis, G. C.; Prinz, G. A., Eds.; Plenum Press: New York, 1991; p 477.
  50. Katz, H. E.; Scheller, G.; Putvinski, T. M.; Schilling, M. L.; Wilson, W. L.; Chidsey, C. E. D. Science 1991, 254, 1485. https://doi.org/10.1126/science.254.5037.1485
  51. Katz, H. E.; Schilling, M. L.; Chidsey, C. E. D.; Putvinski, T. M.;Hutton, R. S. Chem. Mater. 1991, 3, 699. https://doi.org/10.1021/cm00016a025
  52. Ungashe, S. B.; Wilson, W. L.; Katz, H. E.; Scheller, G. R.; Putvinski, T. M. J. Am. Chem. Soc. 1992, 114, 8717. https://doi.org/10.1021/ja00048a065
  53. Katz, H. E.; Schilling, M. L. Chem. Mater. 1993, 5, 1162. https://doi.org/10.1021/cm00032a021
  54. Katz, H. E. Chem. Mater. 1994, 6, 2227. https://doi.org/10.1021/cm00048a009
  55. Xu, X.-H.; Yang, H. C.; Mallouk, T. E.; Bard, A. J. J.Am. Chem. Soc. 1994, 116, 8386. https://doi.org/10.1021/ja00097a064
  56. Vermeulen, L. A.; Thompson, M. E. Nature 1992, 358, 656. https://doi.org/10.1038/358656a0
  57. Chae, H. J.; Lee, M. S.; Kim, Y. I.; Lee, H. Bull. Korean Chem. Soc. 1998, 19, 27.
  58. Lee, M. S.; Shim, H. K.; Kim, Y. I. Mol. Cryst. Liq. Cryst. 1998, 316, 179. https://doi.org/10.1080/10587259808044486
  59. Cho, K. J.; Shim, H. K.; Kim, Y. I. Syn. Metals 2001, 117,153. https://doi.org/10.1016/S0379-6779(00)00491-4
  60. Ziolo, R. F.; Giannelis, E. P.; Weinstein, B. A.; OHoreo, M. P.;Ganguly, B. N.; Mehrotra, V.; Russell, M. W.; Huffman, D. R.Science 1992, 257, 219. https://doi.org/10.1126/science.257.5067.219
  61. Dines, M. B.; DiGiacomo, P. M. Inorg. Chem. 1981, 20, 92. https://doi.org/10.1021/ic50215a022

Cited by

  1. Novel magnetic organic–inorganic nanostructured materials vol.17, pp.40, 2007, https://doi.org/10.1039/b706011d
  2. Reconstitution of Iron Cores in Horse Spleen and Yeast-derived Recombinant Human H- and L-chain Ferritins vol.25, pp.2, 2003, https://doi.org/10.5012/bkcs.2004.25.2.237
  3. 도파민으로 수식된 SAMs 전극에서 NADH의 전기촉매에 의한 산화 vol.48, pp.2, 2003, https://doi.org/10.5012/jkcs.2004.48.2.151
  4. Preparing a Magnetically Responsive Single-Wall Carbon Nanohorn Colloid by Anchoring Magnetite Nanoparticles vol.110, pp.14, 2003, https://doi.org/10.1021/jp0569640
  5. Microwave ferrites, part 1: fundamental properties vol.20, pp.9, 2009, https://doi.org/10.1007/s10854-009-9923-2