DOI QR코드

DOI QR Code

The Potential Energy Surface of BH5 and the Rate of the Hydrogen Scrambling

  • Kim, Kyung-Hyun (Department of Chemistry and Institute of Natural Sciences, Kyung Hee University) ;
  • Kim, Yong-Ho (Department of Chemistry and Institute of Natural Sciences, Kyung Hee University)
  • Published : 2003.06.20

Abstract

The $BH_5$ molecule, which is suggested as an intermediate of the acidolysis of $BH_4^-$, contains a weak two-electron-three-center bond and it requires extremely high-level of theories to calculate the energy and structure correctly. The structures and energies of $BH_5$ and the transition state for the hydrogen scrambling have been studied using recently developed multi-coefficient correlated quantum mechanical methods (MCCMs). The dissociation energies and the barrier heights agree very well with the previous results at the CCSD(T)/ TZ(3d1f1g, 2p1d) level. We have also calculated the potential energy curves for the dissociation of $BH_5$ to $BH_3$ and $H_2$. The lower levels of theory were unable to plot correct potential curves, whereas the MCCM methods give very good potential energy curves and requires much less computing resources than the CCSD(T)/ TZ(3d1f1g,2p1d) level. The potential energy of the $BH_5$ scrambling has been obtained by the multiconfiguration molecular mechanics algorithm (MCMM), and the rates are calculated using the variational transition state theory including multidimensional tunneling approximation. The rate constant at 300 K is 2.1 × $10^9s^{-1}$, and tunneling is very important.

Keywords

References

  1. Mesmer, R. E.; Jolly, W. L. Inorg. Chem. 1962, 1, 608. https://doi.org/10.1021/ic50003a031
  2. Kreevoy, M. M.; Hutchins, J. E. C. J. Am. Chem. Soc. 1972, 94, 6371. https://doi.org/10.1021/ja00773a020
  3. Well, A. N.; New, J. T.; Pitzer, K. S. J. Chem. Phys. 1064, 17, 1007. https://doi.org/10.1063/1.1747104
  4. Tague Jr., T. J.; Andrews, L. J. Am. Chem .Soc. 1994, 116, 4970. https://doi.org/10.1021/ja00090a048
  5. Schreiner, P. R.; Schaefer, H. F.; Schleyer, P. R. J. Chem. Phys.1994, 101, 7625. https://doi.org/10.1063/1.468496
  6. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery,J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.;Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.;Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.;Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P.Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.;Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.;Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M.A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe,M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.;Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.Gaussian 98 Rev. A. 9; Gaussian, Inc.: Pittsburgh, PA, 1998.
  7. Fast, P. L.; Corchado, J. C.; Sanchez, M. L.; Truhlar, D. G. J. Phys.Chem. 1999, 103, 5129. https://doi.org/10.1021/jp9903460
  8. Fast, P. L.; Sanchez, M. L.; Corchado, J. C.; Truhlar, D. G. J.Chem. Phys. 1999, 110, 11679. https://doi.org/10.1063/1.479112
  9. Fast, P. L.; Sanchez, M. L.; Truhlar, D. G. Chem. Phys. Lett. 1999,306, 407. https://doi.org/10.1016/S0009-2614(99)00493-5
  10. Fast, P. L.; Corchado, J. C.; Sanchez, M. L.; Truhlar, D. G. J. Phys.Chem. A 1999, 103, 3139. https://doi.org/10.1021/jp9900382
  11. Fast, P. L.; Truhlar, D. G. J. Phys. Chem. 2000, 104, 6111. https://doi.org/10.1021/jp000408i
  12. Truong, T. N.; Truhlar, D. G.; Baldridge, K. K.; Gordon, M. S.;Steckler, R. J. Chem. Phys. 1989, 90, 7137. https://doi.org/10.1063/1.456244
  13. Tratz, C. M.; Fast, P. L.; Truhlar, D. G. PhysChemComm. 1999, 2, 1. https://doi.org/10.1039/a900479c
  14. Rodgers, J. M.; Lynch, B. J.; Fast, P. L.; Chuang, Y.-Y.; Pu, J.;Truhlar, D. G. Multilevel-version 2.1.1; University of Minnesota:Minneapolis, MN, 2000.
  15. Kim, Y.; Corchado, J. C.; Villa, J.; Xing, J.; Truhlar, D. G. J.Chem. Phys. 2000, 112, 2718. https://doi.org/10.1063/1.480846
  16. Nguyen, K. A.; Rossi, I.; Truhlar, D. G. J. Chem. Phys. 1995, 5522.
  17. Ischtwan, J.; Collins, M. J. Chem. Phys. 1994, 100, 8080. https://doi.org/10.1063/1.466801
  18. Truhlar, D. G.; Garrett, B. C. J. Chim. Phys. 1987, 84, 365.
  19. Truhlar, D. G.; Isaacson, A. D.; Garrett, B. C. In Theory ofChemical Reaction Dynamics; Baer, M., Ed.; CRC Press: BocaRaton, FL, 1985; Vol. 4; p 65.
  20. Garrett, B. C.; Truhlar, D. G.; Grev, R. S.; Magnuson, A. W. J.Phys. Chem. 1980, 84, 1730. https://doi.org/10.1021/j100450a013
  21. Park, C.-Y.; Kim, Y.; Kim, Y. J. Chem. Phys. 2001, 115, 2926. https://doi.org/10.1063/1.1386416
  22. Kim, Y.; Kim, Y. Chem. Phys. Lett. 2002, 362, 419. https://doi.org/10.1016/S0009-2614(02)01103-X
  23. Seo, Y.; Kim, Y.; Kim, Y. Chem. Phys. Lett. 2001, 340, 186. https://doi.org/10.1016/S0009-2614(01)00372-4
  24. Stanton, J. F.; Lipscomb, W. N.; Bartlett, R. J. J. Am. Chem. Soc.1988, 111, 5273.