DOI QR코드

DOI QR Code

Characterization of Surface Roughness and Inhomogeneity of Hot-Rolled Carbon Steels by Using Image Analysis Method and Electrochemical Impedance Spectroscopy

  • Pyun, Su-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Na, Kyung-Hwan (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Go, Joo-Young (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Jin-Ju (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2003.08.01

Abstract

The present work is concerned with characterization of surface roughness and inhomogeneity of four kinds of hot-rolled carbon steels in terms of the fractal dimension and the depression parameter by using image analysis method and electrochemical impedance spectroscopy, respectively. From the analysis of the 3D AFM image, it is realized that all the hot-rolled steel surfaces show the self-affine fractal property. The values of the fractal dimension of the hot-rolled steels were determined by the analyses of the AFM images on the basis of both the perimeter-area method and the triangulation method. In addition, the Nyquist plots were found to be depressed from a perfect semicircle form. From the experimental findings, the changes in the values of the fractal dimension and the depression parameter with chemical composition have been discussed in terms of the change in the value of hardness of base steel.

Keywords

References

  1. J. Met. v.19 R. M. Hudson;D. W. Brown;C. J. Warning
  2. Metals Handbook, (9th ed.) Pickling of Iron and Steel R. M. Hudson;R. J. Joniec;S. R. Shatynski
  3. Corros. Sci. v.30 G. S. Frankel https://doi.org/10.1016/0010-938X(90)90199-F
  4. Corros. Sci. v.32 J. M. Gosta;F. Sagues;M. Vilarrasa https://doi.org/10.1016/0010-938X(91)90114-5
  5. Phys. Rev. E v.50 T. Holten;T. Jøssang;P. Meakin;J. Feder https://doi.org/10.1103/PhysRevE.50.754
  6. Physica A v.217 L. Balazs;J. F. Gouyet https://doi.org/10.1016/0378-4371(95)00048-C
  7. The Fractal Geometry of Nature B. B. Mandelbrot
  8. Fractals J. Feder
  9. J. Electroanal. Chem. v.531 H.-C. Shin;S.-I. Pyun;J.-Y. Go https://doi.org/10.1016/S0022-0728(02)01068-9
  10. Corros. Sci. v.45 J.-J. Park;S.-I. Pyun https://doi.org/10.1016/S0010-938X(02)00212-3
  11. J. Electroanal. Chem. v.549 J.-Y. Go;S.-I. Pyun;Y.-D. Hahn https://doi.org/10.1016/S0022-0728(03)00244-4
  12. Electrochim. Acta C.-H. Kim;S.-I. Pyun
  13. J. Electroanal. Chem. S.-B. Lee;S.-I. Pyun
  14. private communication H.-C. Shin;J.-Y. Go
  15. Impedance Spectroscopy Measuring Techniques and Data Analysis M. C. H. McKubre;D. D. Macdonald;J. R. Macdonald;J. R. Macdonald(ed)
  16. J. Mat. Sci. Letters v.13 J.-S. Bae;S.-I. Pyun https://doi.org/10.1007/BF00592612
  17. Fractal Surfaces J. C. Russ
  18. Nature v.308 B. B . Mandelbrot;D. E. Passoja;A. J. Paullay https://doi.org/10.1038/308721a0
  19. Physica Scripta v.32 B. B. Mandelbrot https://doi.org/10.1088/0031-8949/32/4/001
  20. J. Phys. Chem. v.96 J. M. Gomez-Rodriguez;A. M. Baro;L. Vazquex;R. C. Salvarezza;J. M. Vara;A. J. Ariva https://doi.org/10.1021/j100180a064
  21. Electrochim. Acta v.37 P. Herrasti;P. Ocon;R. C. Salvarezza;J. M. Vara;L. Vazquez;A. J. Arvia https://doi.org/10.1016/0013-4686(92)85113-Y
  22. Mat. Sci. & Eng. B v.38 P. L. Antonucci;R. Barberi;A. S. Arico;A. Amoddeo;V. Antonucci https://doi.org/10.1016/0921-5107(95)01240-0
  23. Synth. Metals v.93 T. Silk;Q. Hong;J. Tamm;R. C. Compton https://doi.org/10.1016/S0379-6779(98)80132-X
  24. Phys. Rev. B v.51 C. Douketis;Z. Wang;T. L. Haslett;M. Moskovits https://doi.org/10.1103/PhysRevB.51.11022
  25. J. Electrochem. Soc. v.133 T. Pajkossy;L. Nyikos https://doi.org/10.1149/1.2108340
  26. Physical Review A v.35 T. C. Halsey https://doi.org/10.1103/PhysRevA.35.3512
  27. Solid State Ionics v.26 R. M. Hill;L. A. Dissado https://doi.org/10.1016/0167-2738(88)90257-3
  28. Electrochim. Acta v.30 L. Nyikos;T. Pajkossy https://doi.org/10.1016/0013-4686(85)80016-5
  29. Corros. Sci. v.27 U. Rammelt;G. Reinhard https://doi.org/10.1016/0010-938X(87)90079-5
  30. J. Electroanal. Chem. v.364 T. Pajkossy https://doi.org/10.1016/0022-0728(93)02949-I

Cited by

  1. The cell-impedance-controlled lithium transport through LiMn2O4 film electrode with fractal surface by analyses of ac-impedance spectra, potentiostatic current transient and linear sweep voltammogram vol.51, pp.22, 2006, https://doi.org/10.1016/j.electacta.2005.12.045
  2. An experimental study on cell-impedance-controlled lithium transport through Li1−δCoO2 film electrode with fractal surface by analyses of potentiostatic current transient and linear sweep voltammogram vol.50, pp.27, 2005, https://doi.org/10.1016/j.electacta.2005.03.025
  3. A study on lithium transport through fractal Li1−δCoO2 film electrode by analysis of current transient based upon fractal theory vol.49, pp.16, 2004, https://doi.org/10.1016/j.electacta.2004.02.012