Photoelectrochemical and Hydrogen Production Characteristics of CdS-TiO2 Nanocomposite Photocatalysts Synthesized in Organic Solvent

유기용매상에서 제조된 수소제조용 CdS-TiO2 나노복합 광촉매의 특성 연구

  • Jang, Jum-Suk (Fine & Bio-chemical Process R&D Center Korea Research Institute of Chemical Technology) ;
  • So, Won-Wook (Fine & Bio-chemical Process R&D Center Korea Research Institute of Chemical Technology) ;
  • Kim, Kwang-Je (Fine & Bio-chemical Process R&D Center Korea Research Institute of Chemical Technology) ;
  • Moon, Sang-Jin (Fine & Bio-chemical Process R&D Center Korea Research Institute of Chemical Technology)
  • 장점석 (한국화학연구원 정밀 . 생화학공정개발연구센터) ;
  • 소원욱 (한국화학연구원 정밀 . 생화학공정개발연구센터) ;
  • 김광제 (한국화학연구원 정밀 . 생화학공정개발연구센터) ;
  • 문상진 (한국화학연구원 정밀 . 생화학공정개발연구센터)
  • Published : 2002.09.15

Abstract

CdS-$TiO_2$ nano-composite sol was prepared by the sol-gel method in organic solvents at room temperature and further hydrothermal treatment at various temperatures to control the physical properties of the primary particles. Again, CdS-$TiO_2$ composite particulate films were made by casting CdS-$TiO_2$ sols onto $F:SnO_2$ conducting glass and then heat-treatment at $400^{\circ}C$. Physical properties of these 61ms were further controlled by the surface treatment with $TiCl_4$, aqueous solution. The photo currents and hydrogen production rates measured under the experimental conditions varied according to the $CdS/[CdS+TiO_2]$ mole ratio and the mixed-sol preparation method. For $CdS-TiO_2$ composite sols prepared in IPA, CdS particles were homogeneously surrounded by $TiO_2$ particles. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$. It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

Keywords

Acknowledgement

Supported by : 에너지관리공단

References

  1. N. Serpone, E. Borgarello and M. Gratzel : J. Chem. Soc. Chem., Commun., 1984, pp.342
  2. M. Barbeni : Int. J. Hydrogen Energy, 10, 1985, pp. 249 https://doi.org/10.1016/0360-3199(85)90095-3
  3. E. Borgarello, K. Kalyanasundaram and M. Gratzel : Chim. Acta, 65, 1982, pp. 243 https://doi.org/10.1002/hlca.19820650123
  4. M. Tomkiewicz and J.M. Woodall : J. Electrochem. Soc., 124, 1977, pp. 1436 https://doi.org/10.1149/1.2133669
  5. P.A. Kohl, S.N. Frank, and A. J. Bard : Journal of The Electrochemical Society,124, 1977, pp. 225 https://doi.org/10.1149/1.2133270
  6. A. K. Ghosh and H. P. Maruska : Journal of The Electrochemical Society, 124, 1977, pp. 1516 https://doi.org/10.1149/1.2133104
  7. A. Monnier and J. Augustynski : ibid., 127, 1980, pp. 1576 https://doi.org/10.1149/1.2129954
  8. P.H.M. Dekorte, L.G.J. DeHaart, R.U.E. Tram and G. Blasse : Solid State Commun., 38, 1981, pp. 213 https://doi.org/10.1016/0038-1098(81)91139-X
  9. K. Gurunathan and P. Maruthamuthu : J. Hydrogen Energy, 20(4), 1995, pp. 287 https://doi.org/10.1016/0360-3199(94)E0028-W
  10. H. Takahashi, et al. : J. Alloys & compounds, 285, 1999, pp. 77 https://doi.org/10.1016/S0925-8388(98)00968-2
  11. M. Khono, et al. : J. Chem. Soc. Faraday Trans., 94(1), 1998, pp. 89 https://doi.org/10.1039/a704947a
  12. H.G. Kim, D.W Hwang, J.D. Kim, Y.G. Kim, J.S. Lee : Chem. Commun., 1999, pp.1077
  13. D.W Hwang, H.G. Kim, J.D. Kim, K.Y. Cha, Y.G. Kim, J.S. Lee : J. Catalysis, 2000, pp. 40
  14. A. Kudo, H. Kato, S. Nakagawa : J. Phys Chem. B 104, 2000, pp. 571 https://doi.org/10.1021/jp9919056
  15. J.S. Jang, H.Y. Chang, W.W. So, Y.W. Rhee, S.J. Moon : J. the Korean Hydrogen Energy Society 11(3), 2000, pp. 119
  16. S.S. Kim, J.S. Jang, W.W. So, K.J. Kim, S.J. Moon : J. the Korean Hydrogen Energy Society 11 (4), 2000, pp. 161
  17. J.S. Jang, W.W. So, K.J. Kim, S.J. Moon : Trans. the Korean Hydrogen Energy Society 13 (1), 2002, pp. 34