고온열 이용 공정의 열역학적 해석

Thermodynamic Analysis of Thermochemical Process for Water Splitting

  • 김종원 (수소에너지연구센터, 한국에너지기술연구원) ;
  • 손현명 (수소에너지연구센터, 한국에너지기술연구원) ;
  • 이상호 (수소에너지연구센터, 한국에너지기술연구원) ;
  • 심규성 (수소에너지연구센터, 한국에너지기술연구원) ;
  • 정광덕 (나노환경연구센터 한국과학기술연구원)
  • Kim, Jong-Won (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Son, Hyun-Myung (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Lee, Sana-Ho (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Sim, Kyu-Sung (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Jung, Kwang-Deog (Eco-nano Research Center, Korea Institute of Science and Technalogy)
  • 발행 : 2002.09.15

초록

In this work, hydrogen production by a 2-step water-spritting thermochemical cycle based on metal oxides redox pairs was investigated on the bases of the thermodynamics and technical feasibility. Also, a 2nd-law analysis performed on the closed cyclic process indicates a maximum exergy conversion efficiency of 7.1% when using a solar cavity-receiver operated at 2300K and air/Fe3O4 molar ratio = 10.

키워드

과제정보

연구 과제번호 : 고효율수소제조기술개발연구

연구 과제 주관 기관 : 과학기술부

참고문헌

  1. M. Lundberg, "Model calculations on some feasible two-step water splitting processes", Int. J. Hydrogen Energy, Vol 18, No 5, 1993, pp. 369-376 https://doi.org/10.1016/0360-3199(93)90214-U
  2. K. Ehrensberger, A. Frei, P Kuhn, H.R. Oswald and P Hug, "Comparative experimental investigations of the water-splitting reaction with iron oxide Fel-yO and iron manganese oxides (Fel-xMnx)l-yO", Solid State lonics, Vol 78, 1995, pp. 151-160 https://doi.org/10.1016/0167-2738(95)00019-3
  3. A. Steinfeld, S. Sanders and R. Palumbo, "Design aspects of solar thennochemical engineering-a case study: two-step water-splitting cycle using the $Fe_{3}O_{4}$/FeO redox system", Solar Energy, Vol 65, No. 1, 1999, pp. 43-53 https://doi.org/10.1016/S0038-092X(98)00092-9
  4. A. Steinfeld, M. Brack, A. Meier, A. Weidenkaff, and D. Wuillemin, "A solar chemical reactor for co-production of Zinc and synthesis gas", Energy-the International Journal, Vol 23, No 10, 1998, pp. 803-814 https://doi.org/10.1016/S0360-5442(98)00026-7
  5. Y. Tamaura, N. Kojima, N. Hasegawa, M. Inoue, R. Uehara, N. Gokon and H. Kaneko, "Stoichiometric studies of H2 generation reaction for H20/Zn/Fe304 system", Int. J. Hydrogen Energy, Vol 26, 2001, pp. 917-922 https://doi.org/10.1016/S0360-3199(01)00039-8
  6. J. A. Funk, "Thermochemical hydrogen production: past and present", Int. J. hydrogen Energy, Vol 26, 2001, pp. 185-190 https://doi.org/10.1016/S0360-3199(00)00062-8
  7. T. Sano, N. Hasegawa, M. Tsuji and Y. Tamaura, "A carbon-bearing nickel (II) ferrite: a tailor-made solid reactant for two-step thennochemical water splitting at 300oC", J. Mater.Chem., Vol 6, No 4, 1996, pp. 605-609 https://doi.org/10.1039/jm9960600605
  8. A. Yogev, A. Kribus, M. Epstein and A.Kogan, "Solar 'tower reflector' systems: a new approach for high-temperature solar plants", Int. J. Hydrogen Energy, Vol 23, 1998, pp. 239-45 https://doi.org/10.1016/S0360-3199(97)00059-1
  9. 掘 雅夫, "原子力水業生産の 國際動向", 原子力eye, 2002년 9월호 (일본)
  10. A. Steinfeld, "Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions", Int. J. Hydrogen Energy, Vol 27, 2002, pp.611-619 https://doi.org/10.1016/S0360-3199(01)00177-X
  11. 김종원, 손현명, 이상호, 심규성, 정광덕, "고온열 이용 공정의 열역학적 해석", 한국수소에너지학회 춘계학술대회논문집, 2002