Journal of Korean Tunnelling and Underground Space Association (한국터널지하공간학회 논문집)
- Volume 4 Issue 4
- /
- Pages.277-286
- /
- 2002
- /
- 2233-8292(pISSN)
- /
- 2287-4747(eISSN)
A prediction of the rock mass rating of tunnelling area using artificial neural networks
인공신경망을 이용한 터널구간의 암반분류 예측
- Published : 2002.12.01
Abstract
Most of the problems in dealing with the tunnel construction are the uncertainties and complexities of the stress conditions and rock strengths in ahead of the tunnel excavation. The limitations on the investigation technology, inaccessibility of borehole test in mountain area and public hatred also restrict our knowledge on the geologic conditions on the mountainous tunneling area. Nevertheless an extensive and superior geophysical exploration data is possibly acquired deep within the mountain area, with up to the tunnel locations in the case of alternative design or turn-key base projects. An appealing claim in the use of artificial neural networks (ANN) is that they give a more trustworthy results on our data based on identifying relevant input variables such as a little geotechnical information and biological learning principles. In this study, error back-propagation algorithm that is one of the teaching techniques of ANN is applied to presupposition on Rock Mass Ratings (RMR) for unknown tunnel area. In order to verify the applicability of this model, a 4km railway tunnel's field data are verified and used as input parameters for the prediction of RMR, with the learned pattern by error back propagation logics. ANN is one of basic methods in solving the geotechnical uncertainties and helpful in solving the problems with data consistency, but needs some modification on the technical problems and we hope our study to be developed in the future design work.
터널을 설계함에 있어서 굴착방법이나 지보패턴을 결정할 때 어려움을 겪는 주된 요인은 현지 지반에 작용하는 응력조건 및 암반상태를 정확히 파악하는데 한계가 있기 때문이다. 현장 장비의 제약, 터널을 굴착 위치까지 접근성이 난이함 등의 기술적인 제약뿐만 아니라 최근에는 민원이나 각종 인허가 등으로 더욱 많은 제약요건이 존재한다. 그럼에도 불구하고 최근들어 대안설계나 턴키설계를 통하여 직접적인 시추에 의존하지 않더라도 미지의 산악터널구간에 대한 지반정보를 획득할 수 있는 고급화된 물리탐사기술이 눈부시게 발전하는 추세이며 이를 통하여 터널굴착구간의 암반에 대한 직 간접적인 지반정보를 입수할 수 있다. 인공신경망 (ANN)의 장점은 이러한 적은 양의 지반정보와 생물학적인 로직화 과정을 통하여 입력변수에 대한 보다 신뢰성있는 결과를 제공하여 준다는 것이다. 본 연구에서는 미지의 터널굴착구간에 대한 예비 지반정보를 입력항목으로 하여 인공신경망의 오류역전파 학습알고리즘기법에 의하여 학습된 패턴을 가지고 미지의 터널굴착구간에 대한 예비 암반분류 (RMR)를 수행하는데 그 목적을 두었다. 이를 위하여 연장 4km에 달하는
Keywords