MULTIGRID METHOD FOR TOTAL VARIATION IMAGE DENOISING

  • HAN, MUN S. (ETRI) ;
  • LEE, JUN S. (Department of Mathematics KAIST)
  • 발행 : 2002.12.31

초록

Total Variation(TV) regularization method is effective for reconstructing "blocky", discontinuous images from contaminated image with noise. But TV is represented by highly nonlinear integro-differential equation that is hard to solve. There have been much effort to obtain stable and fast methods. C. Vogel introduced "the Fixed Point Lagged Diffusivity Iteration", which solves the nonlinear equation by linearizing. In this paper, we apply multigrid(MG) method for cell centered finite difference (CCFD) to solve system arise at each step of this fixed point iteration. In numerical simulation, we test various images varying noises and regularization parameter $\alpha$ and smoothness $\beta$ which appear in TV method. Numerical tests show that the parameter ${\beta}$ does not affect the solution if it is sufficiently small. We compute optimal $\alpha$ that minimizes the error with respect to $L^2$ norm and $H^1$ norm and compare reconstructed images.

키워드