DOI QR코드

DOI QR Code

갯장어 효소 가수분해물의 제조 및 특성

Production and Characteristics of Protein Hydrolysate from Sharp Toothed Eel (Muraenesox cinereus)

  • 조혜영 (여수대학교 식품영양학과) ;
  • 안창범 (여수대학교 식품영양학과)
  • Cho Hye Young (Department of food science and nutrition, Yosu national university) ;
  • Ahn Chang Bum (Department of food science and nutrition, Yosu national university)
  • 발행 : 2002.01.01

초록

갯장어를 이용한 부가가치 높은 가공식품 개발의 일환으로 분말형태의 효소 가수분해물을 제조하고 그 특성을 살펴보았다. 분말제품의 정미성 및 소화성을 높이고 분말화를 용이하게 하기 위해 분말화하기 전에 원료윽의 효소가수분해를 검토한 결과 상업용 효소인 Flavourzyme MG^{GM}가 관능적으로 쓴맛이 적고 정미성 또한 어느 정도 향상되어 가장 적절한 효소로 판명되었고, 사용농도는 원료 단백질 함량의 $2\%$ (w/w)로 하고, 원료에 대해 동량의 물을 가하여 마쇄한 다음 $50^{\circ}C$에서 6시간 처리하는 것이 좋았다. 가수분해 후 저장 중 제품의 품질 안정성에 영향을 미치는 유지를 제거하기 위해 n-hexane을 처리한 결과 효과가 있었고, 처리방법으로는 가수분해액즙에 대해 n-hexane을 4:1 (가수분해액즙:n-hexane)의 비율로 첨가하여 진탕하고 원심분리 후 상층액을 제거하는 식으로 5회 반복하는 방법이 좋았다. 그 결과 분말상태의 제품의 유지함량을 $1\%$ 이하로 낮출 수 있었다. 분말제품의 총아미노산 조성은 원료육의 것과 비교해 거의 차이가 없었고, glutamic acid, aspartic acid, Iysine, leucine, glycine 및 arginine 둥의 아미노산이 풍부했다. 유리아미노산은 가수분해로 인해 약 3배로 증가하였고, serine, glutamic acid, alanine 및 methionine과 같은 umami를 내는 아미노산도 역시 증가하였는데 그 중에서도 소수성 아미노산인 methionine의 증가가 뚜렷했다. (약 40배). 분말제품에 있어서 양적으로 많은 유리아미노산은 소수성 아미노산인 leucine, phenylalanine, valine, alanine, isoleu-cine 등이었으며, 이중 alanine을 제외하고 모두 필수아미노산이며 이들 5종의 아미노산이 전체의 약 반 ($48.96\%$)을 차지하고 있는 것이 특징적이었다. 단백질 이용율은 2.35$\~$2.87로 원료육과 큰 차이가 없었다. 그리고 갯장어 분말제품의 수분흡수력과 지방흡수력은 각각 870.1 $\pm$$7.9\%$ 및 352.0$\pm$$5.3\%$로 높은 편이었으며, 유화성은 50.3$\pm$$1.2\%$였으나 유화안정성은 없었다. 포말성은 87.5$\pm$$2.5\%$였고 용해도는 산성영역 (pH 2와 4)에서 약 83$\~$$84\%$로 높았으나 pH 6이상에서는 44$\~$$50\%$로 낮았다.

Protein hydrolysate was prepared as a natural flavor stock from the sharp toothed eel (Muraenesox cinereus) mince using com-mercially available proteolytic enzymes, Alcalase, Neutrase, Protamex, and Flavourzyme. A 6 hr hydrolysis of mince, to which water of the equal weight of the mince was added, with $2\%$ (w/w, protein weight) Elavourzyme at $50^{\circ}$ yielded a hydrolysate of the highest acceptability. Removing the access lipid in liquified hydrolysate (not dehydrated) after enzyme hydrolysis, five times repetitive extraction using n-hexane (liquified hydrolysate : n-hexane=4 : 1, v/v) was effective, resulting in less than $1\%$ lipid content of the dehydrated-hydrolysate. The amino acid composition of the hydrolysate (prepared with Flavourzyme) was similar to that of the starting material. Hydrolysis led to an increase in concentration of not only total free amino acid but also free amino acid such as serine, glutamic acid, alanine, and methionine responsible for umami taste, especially up to about 40 times for methionine. Major free amino acids in amount were leucine, phenylalanine, valine, alanine, and isoleucine and they comprised about half of the total free amino acids, Moisture adsorption, fat adsorption, emulsifying capacity, and foaming capacity of the hydrolysate were 870.1 $\pm$ $7.9\%$, 352.0$\pm$ $5.3\%$, 50.3 $\pm$ $1.2\%$, and $87.5\pm$ $2.5\%$, respectively, and solubility was 83$\~$$84\%$ at acid pH range of 2$\~$4.

키워드

참고문헌

  1. Alsmeyer, R.H., A.E. Cunningham and M.L. Happich. 1974. Equations predicting PER from amino acid analysis. Food Technol., 28, 34-40
  2. AOAC. 1990. Official Methods of Analysis. Association of Official Analytical Chemists, Washington, DC, USA
  3. Chobert, J.M., B.H. Catherine and M.G. Nicolas. 1998. Solubility and emulsifying properties of caseins and whey proteins modified enzymatically by trypsin. J. Agric. Food Chem., 36, 883-889 https://doi.org/10.1021/jf00083a002
  4. Clegg, K.M. 1973. Improvements in or relating to the production of pre-digested forms of protein. British Patent 1,338,936
  5. Dambergs, N. 1959. Extractives of fish muscle. 2. Sovlent-water ratio in extraction of fat and water solubles. J. Fish. Res. Bd. Canada, 16, 63-71 https://doi.org/10.1139/f59-008
  6. Fuke, S. 1994. Taste active components of seafoods with special reference to umami substances. In Seafoods: Chemistry, Processing Technology and Quality; Shaihidi, F., Botta, J.R., Eds; Blackie Academic & Professional: London, U.K.; Chapter 8
  7. Gillet, M. 1985. Flavor effects of sodium chloride. Food Technol., 39, 47-52, 56
  8. Kilara, A. 1985. A enzyme-modified protein food ingredients, Process Biochem., 20, 149-158
  9. Kim, Y.U., Y.M. Kim and Y.S. Kim. 1994. Commercial fishes of the costal and offshore water in Korea. National fisheries research and development agency (South Korea), p. 51 (in Korean)
  10. Lee, Y.B., J.G. Elliot, D.A. Rickansrud and E.C. Mugberg. 1978a. Predicting protein efficiency ratio by the chemical determinations of connective tissue content in meat. J. Food Sci., 43, 1359-1362 https://doi.org/10.1111/j.1365-2621.1978.tb02490.x
  11. Lee, E.H., Y.H. Park, J.H. Pyeun, S.K. Kim, S.T. Yang and Y.O. Song. 1978b. Studies on the processing and utilization of sardine protein concentrate. Bull. Korean Fish. Soc., 11, 25-27 (in Korean)
  12. Lin, M.J.Y., E.S. Humbert and F.W. Sosulki. 1974. Certain function properties of sunflower meals. J. Food Sci., 39, 368-371 https://doi.org/10.1111/j.1365-2621.1974.tb02896.x
  13. Mackie, I.M. 1982. General review of fish protein hydrolysates. Animal Feed Sci. Techonol., 7, 113-124 https://doi.org/10.1016/0377-8401(82)90045-1
  14. Mohr, V. 1977. Fish protein concentrate production by enzyme hydrolysis. In Biochemical Aspects of New Protein Food, ed. J. Alder-Nissen, B.O. Eggum, L. Munck & H.S. Olsen, FEBS Federation Biochemical Societies, 11th Meeting, Copenhagen, Vol. 44, pp. 53-62
  15. Pedersen, B. 1994. Removing bitterness from protein hydrolysates. Food Technol., 48, 96-98, 76
  16. Pommer, K. 1995. New proteolytic enzymes for the production of savory ingredients. Cereal Foods World, 40, 745-748
  17. Rebeca, B., M.T. Pena-Vera and Diaz-Castaneda. 1991. Production of fish protein hydrolysates with bacterial proteases; yield and nutritional value. J. Food Sci., 56, 309-314 https://doi.org/10.1111/j.1365-2621.1991.tb05268.x
  18. Sathe, S.K. and D.K. Salunkhe. 1981. Functional properties of the great Notthern bean proteins : Emulsion, foaming, viscosity and gelatin properties. J. Food Sci., 46, 71-75 https://doi.org/10.1111/j.1365-2621.1981.tb14533.x
  19. Shahidi, F., M. Naczk, R.B. Pegg and J. Synowiecki. 1991. Chemical composition and nutritional value of processing discards of cod (Gauds morhus). Food Chem., 42, 145-151 https://doi.org/10.1016/0308-8146(91)90030-R
  20. Shahidi, F., X.Q. Han and J. Synowiecki. 1995. Production and characteristics of protein hydorlysates from capelin (Mallotus villosus). Food Chem., 53, 285-293 https://doi.org/10.1016/0308-8146(95)93934-J
  21. Steel, R.G.D. and J.H. Torrie. 1980. Principles and procedures of statistics. 2'nd ed. McGraw-Hill Co. New York
  22. Surowka, K. and M. Fik. 1994. Studies on the recovery of proteinaceous substances from chicken head: II-Application of pepsin to the production of protein hydrolysate. J. Sci. Food Agric., 65, 289-296 https://doi.org/10.1002/jsfa.2740650305
  23. Wang, J.C. and J.E. Kinsella. 1976. Functional properties of novel protein: Alfalfa leaf protein. J. Food Sci., 41, 286-292 https://doi.org/10.1111/j.1365-2621.1976.tb00602.x
  24. 李應昊. 1985. 水産加工學, 先進文化社, pp. 287-332