DOI QR코드

DOI QR Code

Effects of Trialkyltin in vitro on the Microsomal Monooxygenase System of Digestive Gland in the Clam, Coelomactra antiquata

유기주석화합물이 명주조개 (Coelomactra antiquata)의 약물대사효소계에 미치는 영향

  • 전중균 (강릉대학교 해양생명공학부/동해안해양생물자원연구센터 (EMBRC)) ;
  • 이미희 (강릉대학교 해양생명공학부/동해안해양생물자원연구센터 (EMBRC)) ;
  • 김도진 (강릉대학교 해양생명공학부/동해안해양생물자원연구센터 (EMBRC)) ;
  • 심원준 (한국해양연구원 해양환경기후연구본부) ;
  • 오재룡 (한국해양연구원 해양환경기후연구본부) ;
  • 이수형 (한국해양연구원 해양환경기후연구본부)
  • Published : 2002.03.01

Abstract

This study was carried out to measure the in vitro interaction of trialkyltin with the microsomal monooxygenase (MFO) system of the clam, Coelomactra antiquata. Cytochrome P450 (CYP) level and 7-ethonvesorufin-O-deethylase (EROD) activity were invetigated in the microsome isolated from digestive gland of the clam (C. antiquata) exposed to tributyltin chloride (TBTC), bis-tributyltinoxide (TBTO) and triphenyltin chloride (TPTC). The specific contents of CYP in clam microsome exposedto 0.4 mM TBTC, TBTO and TPTC for 20 minutes were decreased 52, 72 and $40\%$, respectively, compared to control group. The EROD activities also were inhibited by exposure to TBTO ($92\%$) and TPTC ($85\%$) except for TBTC, The level of CYP and the EROD actintles were decreased according to the OTC exposure concentrations. The toxic effects on the level of CYP and the EROD activities were in order of TPTC>TBTC>TBTO in this study. The measurement of CYP level and EROD activity could be applied as a biomarker for environmental study.

강원 북부연안에 많이 서식하는 명주조개 (C. antiquafa)를 대상으로 중장선의 미크로좀을 in vitro로 유기주석화합물 (TBTO, TBTC, TPTC)과 배양하여 약물대사효소계의 cytochrome P450 (CYP)과 7-ethoxyresorufin-O-deethylase (EROD)의 변화를 조사하였다. 그 결과, 이들 화합물은 모두 명주조개의 약물대사효소계를 짧은 시간 내에 저해한다는 것을 확인하였다. 즉,미크로좀을 0.4 mM 농도의 TBTC, TBTO 및 TPTC와 20분간 배양한 후의 CYP 함량은 첨가하기 전에 비해 각각 $52\%$, $72\%$$40\%$로 줄었는데, 이것으로 화합물의 종류에 따라서 저해 정도는 차이가 있었고 butyltin화합물보다는 phenyltin화합물의 저해 정도가 더 컸다. 그리고 EROD 활성의 경우도 0.4 mM의 TBTC, TBTO 및 TPTC와 20분 간 배양하였더니 각각 $100\%$, $92\%$$85\%$로 butyltin 화합물보다 는 phenyltin 화합물의 저해가 더 컸다. 한편, TBTC, TBTO 및 TPTC 모두는 패류 중장선의 CYP와 EROD 활성을 농도의존적으로 저해하였으며, 그리고 두 효소는 모두 오염물질에 노출된 패류의 좋은 생체지표 (bioindicator)로 활용할 수 있을 것이라 여겨진다.

Keywords

References

  1. Alzieu, C. 1991. Environmental problems caused by TBT in France: Assessment, regulations, Prospects. Mar. Environ. Res., 32, 7-18 https://doi.org/10.1016/0141-1136(91)90029-8
  2. Beaumont, A.R. and M.D. Budd. 1984. High mortality of the larvae of the common mussel at low concentrations of tributyltin. Mar. Pollut. Bull., 15, 402-405 https://doi.org/10.1016/0025-326X(84)90256-X
  3. Burke, M.D. and R.T. Mayer. 1974. Ethoxyresorufin: Direct fluorometric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methy1cho1antrene. Drug Metab. Disp., 2, 583-588
  4. Bushong, S.J., L.W.J. Hall, W.S. Hall, W.E. Johnson and R.L. Herman. 1988. Acute toxicity of tributyltin to selected ChesapeakeBay fish and invertebrates. Water Res., 22, 1027-1032 https://doi.org/10.1016/0043-1354(88)90150-9
  5. Fent, K. 1996. Ecotoxicology of organotin compounds. CRC Cht. Rev. Toxicol., 26, 1-117
  6. Fent, K. and T.D. Bucheli. 1994. Inhibition of hepatic microsomal monooxygenase system by organotins in vitro in freshwater fish. Aquat. Toxicol., 28, 107-126 https://doi.org/10.1016/0166-445X(94)90024-8
  7. Fent, K. and J.J. Stegeman. 1991. Effects of tributyltin chloride in vitro on the hepatic microsomal monooxygenase system in the fish Stenetomus chrysops. Aquat. Toxicol., 20, 159-168 https://doi.org/10.1016/0166-445X(91)90014-Z
  8. Fent, K. and J.J. Stegeman. 1993. Effects of tributyltin chloride in vivo on hepatic cytochrome P450 forms in marine fish. Aquat. Toxicol., 24, 219-240 https://doi.org/10.1016/0166-445X(93)90073-A
  9. Gibbs, P.E., G.W. Bryan, P.L. Pascoe and G.R. Burt. 1987. The use of the dog-whelk, Nucella lapillus, as an indicator of tnbutyltin (TBT) contamination. J. Mar. Biol. Assoc. U.K., 67, 507-523 https://doi.org/10.1017/S0025315400027260
  10. Goks$\phi$yr, A. and L. F$\"o$rlin. 1992. The cytochrome P450 system in fish, aquatic toxicology, and environmental monitoring. Aquat. Toxicol., 22, 287-312 https://doi.org/10.1016/0166-445X(92)90046-P
  11. Goks$\phi$yr, A. 1995. Use of cytochrome P4501A (CYPlAl) in fish as a biomarker of aquatic pollution. Arch. Toxicol., Suppl., 17, 80-95 https://doi.org/10.1007/978-3-642-79451-3_7
  12. Kime, D.E. 1998. Disruption of liver function, In Endocrine Disruption in Fish, D.E. Kime, ed. Kluwer Academic Publishers, Boston, pp. 201-246
  13. Lapota, D., D.E. Rosenberger, M.F. Platter Rieger and P.F. Seligman. 1993. Growth and survival of Mytilus edulis larvae exposed to low levels of dibutyltin and tributyltin. Mar. Biol., 115, 413-419 https://doi.org/10.1007/BF00349840
  14. Livingstone, D.R. 1989. Cytochrome P450 and oxidative metabolism in molluscs. Xenobiotica, 19, 1041 - 1062 https://doi.org/10.3109/00498258909043161
  15. Livingstone, D.R. 1991. Organic xenobiotic metabolism in marine invertebrates, In Advances in Comparative and Environmental Physiology, Vol. 7, R. Gilles, ed. Springer-Verlag, Berlin, pp. 45-185
  16. Livingstone, D.R. 1996. Persistent Pollutants in Marine Ecosystems. M. Richardson, ed. Taylor & Francis, London, pp. 143-160
  17. Livinstone, D.R., C. Nasci, M. Sol$\'e$, L.D. Ros, S.C.M. O'Hara, L.D. Peters, V. Fossato, A.N. Wootton and P.S. Goldfarb. 1997. Apparent induction of a cytochrome P450 with immunochemical similarities to CYP1A in digestive gland of the common mussel (Mytilus galloprovincialis L.) with exposure to 2,2',3,4,4',5'hexachlorobiphenyl and Arochlor 1254. Aquat. Toxicol., 38, 205-224 https://doi.org/10.1016/S0166-445X(96)00847-8
  18. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement Folin phenol reagent. J. Biol. Chem., 193, 265-275
  19. Matthiessen, P, and P.E. Gibbs. 1998. Critical appraisal of the evidence for tiibutyltin-mediated endocrine disruption in molluscs. Environ. Toxicol. Chem., 17, 37-43 https://doi.org/10.1897/1551-5028(1998)017<0037:CAOTEF>2.3.CO;2
  20. Morcillo, Y. and C. Porte. 1997. Interaction of thbutyl- and triphenyltin with the microsomal monooxygenase system of molluscs and fish from the Western Mediterranean. Aquat. Toxicol., 38, 35-46 https://doi.org/10.1016/S0166-445X(96)00841-7
  21. Morcillo, Y. and C. Porte. 2000. Evidence of endocrine disruption in clams - Ruditapes desussata - transplanted to a tributyltin-polluted environment. Environ. Pollut., 107, 47-52 https://doi.org/10.1016/S0269-7491(99)00133-5
  22. Morcillo, Y., M.J.J. Ronis, M. Sol$\'e$ and C. Porte. 1998. Effects of tributyltin on the cytochrome P450 monooxygenase system and sex steroid metabolism in the clam Ruditapes decussata. Mar. Environ. Res., 46, 583-586 https://doi.org/10.1016/S0141-1136(97)00079-2
  23. Na, O.S., S.R. Oh, Y.D. Lee, H.J. Baek and H.B. Kim. 2000. Effects of bisphenol A on the hatching of fertilized eggs and spawning of adult fish in songsari, Oryzias latipes. J. Korean Fish. Soc., 33, 378-382 (in Korean)
  24. Oberd$\"o$rster, E., D. Rittschof and D. McClellan-Green. 1998a. Induction of cytochrome P450 3A and heat shock protein by tributyltin in blue crab, Callinectes sapidus. Aquat. Toxicol., 41, 83-100 https://doi.org/10.1016/S0166-445X(97)00067-2
  25. Oberd$\"o$rster, E., D. Rittschof and D. McClellan-Green. 1998b. Testosterone metabolism in imposex and normal Ilyanassa obsoleta: Comparison of field and TBTA Cl-induced imposex. Mar. Pollut. Bull., 36, 144-151 https://doi.org/10.1016/S0025-326X(97)00174-4
  26. Omura, T. and R. Sato. 1964. The carbon-monoxide binding pigment of liver micromes. J. Biol. Chem., 239, 2370-2378
  27. Shim, W.J., S.H. Kahng, S.H. Hong, N.S. Kim, S.K. Kim, J.H. Shim. 2000. Imposex in the rock shell, Thais clavigera, as evidence of organotin contamination in the marine environment of Korea. Mar. Environ. Res., 49, 435-451 https://doi.org/10.1016/S0141-1136(99)00084-7
  28. Shim, W.J. 2000. A Study on the Environmental Chemistry and Toxicology of Organotins in the Marine Environment of Korea. A Ph. D thesis, Seoul National University, 263pp
  29. Sol$\'e$, M. 2000. Effects of tributyltin on the MFO system of the clam Ruditapes desussata: A laboratory and field approach. Comp. Biochem. Physiol., Part C, 125, 93-101
  30. Tak, K.-T. and J.K. Kim. 1999. Acute toxicity of TBT influencing on the production of coastal olive flounder. Korean J. Life Science, 9, 333-340 (in Korean)
  31. Tak, K.-T. and J.K. Kim, 2001. The effect of TBT toxicity on survival and growth of olive flounder, Paralichthys olivaceus. J. Korean Fish. Soc., 34, 103-108 (in Korean)
  32. Thompson, JA., M.G. Sheffer, R.C. Pierce, Y.K. Chau, J.J. Cooney, W. P. Cullen and R.J. Maguire. 1985. Organotin Compounds in the Aquatic Environment: Scientific Criteria for Assessing Their Effects on Environmental Quality. National Research Council Canada, Ottawa, Canada, 284pp
  33. Valkirs, A.O., B. Davidson, L.L. Kear, R.L. Fransham, J.G. Grovhoung and P.F. Seligman. 1991. Long-tenn monitoring of tributyltin in San Diego Bay California. Mar. Environ. Res., 32, 89-111 https://doi.org/10.1016/0141-1136(91)90036-8
  34. 서울대학교. 1996. TBT 오염실태 조사 및 대책 수립 연구. 농림수산부. 서울. 121pp
  35. 한국해양연구소. 1996. 유류 및 유독물질 오염이 수산자원에 미치는 영향에 관한 연구 (I . II). 한국해양연구소보고서 BSPN 00324-983-4, 316pp