DOI QR코드

DOI QR Code

Modification of an Ecosystem Model for Carrying Capacity of Shellfish System -I . Validation and Sensitivity Analysis-

패류양식해역 환경용량 산정 모델 구축 -I . 모델 검정 및 민감도 분석-

  • Lee Won Chan (National Fisheries Research & Development Institute) ;
  • Kim Hyung Chul (National Fisheries Research & Development Institute) ;
  • Choi Woo Jeung (National Fisheries Research & Development Institute) ;
  • Lee Pil Yong (National Fisheries Research & Development Institute) ;
  • Koo Jun Ho (National Fisheries Research & Development Institute) ;
  • Park Chung Kil (Department of Environmental Engineering, Pukyong National University)
  • 이원찬 (국립수산과학원 환경관리과) ;
  • 김형철 (국립수산과학원 환경관리과) ;
  • 최우정 (국립수산과학원 환경관리과) ;
  • 이필용 (국립수산과학원 환경관리과) ;
  • 구준호 (국립수산과학원 환경관리과) ;
  • 박청길 (부경대학교 환경공학과)
  • Published : 2002.07.01

Abstract

Carrying capacity model focused on interactions between the filter-feeder growth and their environments is presented, and differences among existing various carrying capacity models are reviewed. For carrying capacity modeling of shellfish system, we constructed a new numerical model coupled oyster growth model with an ecosystem model (EUTRP2). Physical and biological processes such as water transport and mixing, primary production, feeding and growth of the cultivated oyster, Crassostrea gigas and benthic-pelagic exchange were included in the model, Simulated results for validation showed that the more phytoplankton biomass decreased, the more oyster meat weight and nutrients increased, suggesting a powerful tool for reasonable management of shellfish aquaculture. The model was sensitive to parameters controlling the primary production. Among the ecosystem compartments, the oyster growth is highly influenced by small changes in the physiological parameters of phytoplankton and oyster. This sensitivity analysis indicated the importance of experimental data on biological parameters for calibration of the model.

패류 양식 해역의 서식 환경과 양식 생물간의 상호 관계를 파악하고 지속적인 생산 방안을 위하여 굴 성장과 관련된 생리 대사 과정인 섭이, 소화, 배설, 호홉 등의 제 인자를 수식화하여 기존에 개발된 생태계모델 (EUTRP2)에 연계하여 환경용량 산정 모델을 구축하였다. 구축된 모델이 굴 성장과 서식환경과의 상호관계를 재현함에 있어 타당성 여부를 검정한 결과, 굴 성장에 따른 서식환경 중 식물플랑크톤 현존량이 감소하고 영양염 농도가 증가하는것으로 보아, 패류양식해역의 생태계 환경관리를 위한 도구로 사용할 수 있는 것으로 나타났다. 그리고, 생태계 구성 요소에 영향을 미치는 생물 인자에 대한 민감도 분석 결과, 구성 요소들은 식물플랑크톤의 증식 속도와 높은 민감도를 보였고, 굴 성장의 경우 동물플랑크톤 최대 섭이 속도와는 민감도가 낮은 반면, 식물플랑크톤 증식 속도, 사멸 속도와 굴의 먹이 흡수 효율에 매우 민감하였다.

Keywords

References

  1. Asmus, H., R. Asmus and K. Reise. 1990. Exchange processes in an intertidal mussel bed: A Sylt-flume study in the Wadden Sea. Ber. Biol. Anst. Helgoland, 6, 1-79
  2. Bacher, C., H. Bioteau and A. Chapelle. 1995. Modelling the impact of a cultivated oyster population on the nitrogen dynamics: The Thau lagoon case (France). Ophella, 42, 29-54 https://doi.org/10.1080/00785326.1995.10431496
  3. Bacher, C., P. Duarte, J.G. Feneira, M. He'ral and O. Raillard. 1998. Assessment and comparison of the Marennes-Ole'ron Bay (France) and Carlingford Lough (Ireland) cariying capacity with ecosystem models. 1998. Aquatic Ecology, 31, 379-394
  4. Bayne, B.L. 1998. The physiology of suspension feeding by bivalve molluscs: An introduction to the Plymouth 'TROPHEE' workshop. J. Exp. Mar. Biol. Ecol., 219, 1-19 https://doi.org/10.1016/S0022-0981(97)00172-X
  5. Bernard, F.R., 1974. Annual biodeposition and gross energy budget of mature Pacific oyster, Crassostrea gigas. J. Fish. Res. Board Canada, 31, 185-190 https://doi.org/10.1139/f74-030
  6. Boucher, G. and R. Boucher-Rodoni. 1988. In site measurement of respiratory metabolism and nitrogen fluxes at the interface of oyster beds. Mar. Ecol. Prog. Ser., 44, 229-238 https://doi.org/10.3354/meps044229
  7. Brown, T.N. and D. Kulasiri. 1996. Validating models of complex, stochastic, biological systems. Ecol. Model., 86, 129-134 https://doi.org/10.1016/0304-3800(95)00039-9
  8. Chapelle, A., A. Menesguen, J.M. Deslous-Paoli, P. Souchu, N. Mazouni, A. Vaquer and B. Millet. 2000. Modelling nitrogen, primary production and oxygen in a Mediterranean lagoon. Impact of oysters farming and inputs from the watershed. Ecol. Model., 127, 161-181 https://doi.org/10.1016/S0304-3800(99)00206-9
  9. Choi, W.J., C.K. Park and S.M. Lee. 1994. Numerical simulation of the formation of oxygen deficient water-masses in Jinhae Bay. J. Kor. Fish. Soc., 27, 413-433 (in Korean)
  10. Choi, W.J., Y.Y. Chun, J.H. Park and Y.C. Park. 1997. The influence of environmental characteristics on the fatness of Pacific oyster, Crassostrea gigas, in Hansan-Koje Bay. J. Kor. Fish. Soc., 30, 794-803 (in Korean)
  11. Clemmesen, B. and C.B. Jorgensen. 1987. Energetic coasts and efficiencies of ciliary filter feeding. Mar. Biol., 94, 445-449 https://doi.org/10.1007/BF00428251
  12. Dame, R.F. 1972. The ecological energies of growth, respiration and assimilation in the intertidal American oyster Crassotrea virginica. Mar. Biol., 17, 243-250 https://doi.org/10.1007/BF00366299
  13. Dame, R.F. 1993. The role of bivalve filter feeder material fluxes in estuarine ecosystem. In Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes, R.F. Dame, ed. NATO ASI Series, Springer-Verlag, New York, pp. 245-269
  14. Di Toro, D.M., D.J. O'Connor and R.V. Thomann. 1971. A dynamic model of the phytoplankton population in the Sacramento-SanJoaquin Delta. Adv. Chem. Ser., 106, 131-180 https://doi.org/10.1021/ba-1971-0106.ch005
  15. Doering, P.H. and C.A. Oviatt. 1986. Application of filtration rate models to field populations of bivalves: An assessment using experimental mesocosms. Mar. Ecol. Prog. Ser., 31, 265-275 https://doi.org/10.3354/meps031265
  16. Dowd, M. 1997. On predicting the growth of cultured bivalves. Ecol. Mod., 104, 113-131 https://doi.org/10.1016/S0304-3800(97)00133-6
  17. Eppley, R.W., J.N. Rogers and J.J. MaCarthy. 1969. Half saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr., 14, 912-920 https://doi.org/10.4319/lo.1969.14.6.0912
  18. Eppley, R.W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull., 70, 1063-1082
  19. Frost, B.W. 1972. Feeding behaviour of Calanus pacificus in mixtures of food particles. Limnol. Oceanogr., 17, 805-815 https://doi.org/10.4319/lo.1972.17.6.0805
  20. Gerritsen, J., A.F. Holland and D.E. Irvine. 1994. Suspension-feeding bivalves and the fate of primary production: An estuarine model applied to Chesapeake Bay. Estuaries, 17, 403-416 https://doi.org/10.2307/1352673
  21. Grant, J., M. Dowd, K. Thompson, C. Emerson and A. Hatcher. 1993. Perspectives on field studies and related biological models of bivalve growth and carrying capacity. In Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Process, R.F. Dame, ed. NATO ASI Series, Springer-Verlag, New York, pp. 371-420
  22. H$\'{e}$ral, M., B.J. Rothschild and P. Goulletquer. 1990. Decline of oyster production in the Maryland portion of the Chesapeake Bay: Causes and perspectives. ICES Shellfish Committee K:20, 37p
  23. H$\'{e}$ral, M. 1993. Why carring capacity models are useful tools for management of bivalve molluscs culture. In Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes, R.F. Dame, ed. NATO ASI Series, Springer-Verlag, New York, pp. 455-478
  24. Hibbert, C.J. 1977. Growth and survivorship in a tidal-flat population of the bivalve Mercenaria meivenana from Southampton Water. Mar. Biol., 44, 71-76 https://doi.org/10.1007/BF00386907
  25. Hoch, T. and A. Menesguen. 1997. Modelling the biogeochemical cycles of elements limiting primary production in the English Channel II. Sensitivity analyses. Mar. Ecol. Prog. Ser., 146, 189-205 https://doi.org/10.3354/meps146189
  26. Ishikawa, M. and H. Nishimura. 1983. A new method of evaluating the mineralization of paticulate and dissolved photoassimilated organic matter. J. Oceanogr. Soc. Japan., 39, 29-42 https://doi.org/10.1007/BF02210757
  27. J$\phi$rgensen, S.E. (ed.). 1979. Handbook of Environmental Data and Ecological Parameters. International society for ecological model-ling. Pergamon Press, New York, 1162pp
  28. Kang, C.K., M.S. Park, P.Y. Lee, W.J. Choi and W.C. Lee. 2000. Seasonal variations in condition, reproductive activity and biochemical composition of the Pacific oyster, Crassostrea gigas (Thunberg), in suspended culture in two coastal bays of Korea. J. Shellfish Res., 19, 771-779
  29. Kim, Y.S. 1980. Efficiency of energy transfer by a population of the farmed Pacific oyster, Crassostrea gigas in Geoje-Hansan Bay. Bull. Kor. Fish. Soc., 13, 179-193 (in Korean)
  30. Kleijnen, J.P.C. 1995. Theory and methodology: Verification and validation of simulation models. European J. Operational Res., 82, 145-162 https://doi.org/10.1016/0377-2217(94)00016-6
  31. Klinck, J.M., E.N. Powell, E.E. Hofmann, E.A. Wilson and S.M. Ray. 1992. Modeling oyster populations: The effect of density and food supply on production. Pro. Adv. Mar. Tech. Conf., 5, 85-105
  32. Kobayashi, M., E.E. Hofmann, E.N. Powell, J.M. Klink and K. Kusaka. 1997. A population dynamics model for the Japanese oyster, Crassostrea gigas. Aquaculture, 149, 285-321 https://doi.org/10.1016/S0044-8486(96)01456-1
  33. Kusuki, Y. 1977. Fundamental studies on the deterioration of oyster growing grounds II. Organic content of faecal materials. Bull. Jpn. Soc. Sci. Fish., 43, 167-171 (in Japanese) https://doi.org/10.2331/suisan.43.167
  34. Marshall, S.M. and A.P. Orr. 1955a. Experimental feeding of the copepod Calanus finmarchicus on phytoplankton cultures labeled with radioactive carbon. Pap. Mar. Biol. Oceanogr., Deep-Sea Res., 3, 110-114
  35. Marshall, S.M. and A.P. Orr. 1955b. On the biology of Calanus finmarchicus. VIII. Food uptake, assimilation and excretion in adult and stage V. Calanus. J. Mar. Biol. Asso. UK., 34, 495-529 https://doi.org/10.1017/S0025315400008778
  36. Nakata, K., K. Ishikawa and Y. Matukawa. 1985. Numerical models of coastal current and transport in the bay. Bull. Coastal Oceanogr., 22, 96-108 (in Japanese)
  37. Law, A.M. and W.D. Kelton. 1991. Simulation Modeling and Analysis. 2nd ed., McGraw-Hill, New York, 299pp
  38. Lee, W.C. 2001. Modification and Application of an Ecosystem Model for Carrying Capacity in Oyster Culturing Ground. Ph. D. Thesis. Pukyong Univ., 132pp (in Korean)
  39. Newell, R.I.E. and S.J. Jordan. 1983. Preferential ingestion of organic material by the American oyster Crassotrea virginica. Mar. Ecol. Prog. Ser., 13, 47-53 https://doi.org/10.3354/meps013047
  40. Ogura, N. 1975. Decomposition of dissolved organic matter in coastal seawater. Mar. Biol., 31, 101-111 https://doi.org/10.1007/BF00391622
  41. Powell, E.N. and R.J. Stanton. 1985. Estimating biomass and energy flow of molluscs in palaeocommunities. Palaeontology, 28, 1-34
  42. Powell, E.N., E.E. Hofmann, J.M. Klink and S.M. Ray. 1992. Modelling oyster populations. I. A commentary on filteration rate. Is faster always better? J. Shellfish Res., 11, 387-398
  43. Prins, T.C., A.C. Smaal and R.F. Dame. 1998. A review of the feedbacks between bivalve grazing and ecosystem processes. Aquat. Ecol., 31, 349-359 https://doi.org/10.1023/A:1009924624259
  44. Raillard, O., J.M. Deslous-Paoli, M. Heral and D. Razet. 1993. Model-ling growth and feeding of the Japanese oyster Crassostrea gigas in Marennes-Oleron Bay (France). Oceanolog. Acta., 16, 73-82 (in French)
  45. Raillard, O. and A. M$\'{e}$nesguen. 1994. An ecosystem box model for estimating the carrying capacity of a macrotidal shellfish system. Mar. Ecol. Prog. Ser., 115, 117-130 https://doi.org/10.3354/meps115117
  46. Ross, A.H. and R.M. Nisbet. 1990. Dynamic models of growth and reproduction of the mussel, Mytilus edulis L. Functional Ecology, 4, 777-787 https://doi.org/10.2307/2389444
  47. Rykiel, E.J. 1996. Testing ecological models: The meaning of validation. Ecol. Model., 90, 229-244 https://doi.org/10.1016/0304-3800(95)00152-2
  48. Ryther, J.H. 1956. Photosynthesis in the ocean as a function of light intensity. Limnol. Oceanogr., 1, 61-70 https://doi.org/10.4319/lo.1956.1.1.0061
  49. Salas, H.J. and R.V. Thomann. 1978. A steady-state phytoplankton model of Cheaspeake Bay. J. WPCF, 50, 2752-2770
  50. Schnoor, J.L. 1996. Environmental Modeling: Fate and Transport of Pollutants in Water, Air, and Soil. A Wiley-Interscience Publication, John Wiley & Sons Inc., pp. 9-11
  51. Scholten, H. and A.C. Smaal. 1998. Response of Mytilus edulis L. to varying food concentration: Testing EMMY, an ecophysiological model. J. Exp. Mar. Biol. Ecol., 219, 217-239 https://doi.org/10.1016/S0022-0981(97)00182-2
  52. Shumway, S.E. 1982. Oxygen consumption in oysters: An overview. Mar. Biol. Lett., 3, 1-23
  53. Smaal, A.C. 1991. The ecology and cultivation of mussels: New advances. Aquaculture, 94, 245-261 https://doi.org/10.1016/0044-8486(91)90121-M
  54. Smaal, A.C., T.C. Prince, N. Dankers and B. Ball. 1998. Minimum requirements for modelling bivalve carrying capacity. Aquat. Ecol., 31, 423-428 https://doi.org/10.1023/A:1009947627828
  55. Smayda, T.J. 1970. Suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. Ann. Rev., 8, 354-411
  56. Soniat, T.M., S.M. Ray and L.M. Jeffrey. 1984. Components of the seston and possible available food for oysters in Galveston Bay, Texis. Contriv. Mar. Sci., 27, 127-141
  57. Soniat, T.M. and S.M. Ray. 1985. Relationships between possible available food and the competition, condition and reproductive state of oysters from Galveston Bay, Texas. Contriv. Mar. Sci., 28, 109-121
  58. Steele, J.H. 1974. The Structure of Marine Ecosystems. Cambridge, Mass., Harvard University Press, pp. 1-128
  59. Sugawara, Y. and K. Okoshi. 1991. An important problem for oyster farming in enclosed coastal waters. Mar. Pollut. Bull., 22, 271-274
  60. Suschenya, L.M. 1970. Food rations, metabolism and growth of crustaceans. In Marine Food Chains, J.H. Steele, ed. University of California Press, Berkeley, CA
  61. Walne, P.R. 1972. The influence of current speed, body size and water temperature on the filtration rate of Give species of bivalves. J. Mar. Biol. Assoc. U.K., 52, 345-374 https://doi.org/10.1017/S0025315400018737

Cited by

  1. 수질관리를 위한 시화호의 환경용량 산정 vol.16, pp.5, 2002, https://doi.org/10.5322/jes.2007.16.5.571
  2. 생태지표를 이용한 거제한산만 굴양식장의 생태학적 수용능력 산정 vol.17, pp.4, 2011, https://doi.org/10.7837/kosomes.2011.17.4.315