DOI QR코드

DOI QR Code

Endogenous Rhythm in Oxygen Consumption by the Pacific Oyster Crassostrea gigas (Thunberg)

  • Kim Wan-Soo (Marine Environment & Climate Change Laboratory, Korea Ocean Research & Development Institute) ;
  • Yoon Seong-Jin (Marine Environment & Climate Change Laboratory, Korea Ocean Research & Development Institute) ;
  • Kim Yoon (Marine Environment & Climate Change Laboratory, Korea Ocean Research & Development Institute) ;
  • Kim Sung-Yeon (National Fisheries Researches & Development Institute)
  • Published : 2002.09.01

Abstract

Pacific oysters Crassostrea gigas (Thunberg) were collected on April, 1999 and March­September, 2000 from Goseung Bay along the southern coast of Korea. The oysters tested cp;;ected from a depth of 0.5-2 m in which they cultured by a long line hanging method. The oxygen consumption rates (OCR) of oysters held under constant temperature and darkness (CC), were determined using an automatic intermittent-flow-respirometer (AIFR). Depending on holding periods after oyster collection, the experiments were divided into two groups: Group 7-d (held to ambient temperature for ca. 7 days) and Group 2l-d (held to ambient temperature for ca. 21 days). The OCR for Group 7-d single oyster displayed two peaks every day under CC, while Group 2l-d single oyster showed one peak every day. It is likely that the rhythmic patterns 02.6-12.8 hours) of the OCR in the Group 7-d single oyster may have been influenced by tidal currents at the sampling site. The rhythmic patterns (24.3-24.7 hours) in the Group 2l-d single oyster may have been shifted from two peaks to one peak each day under CC. The present study concludes that the OCR rhythm of wild oysters in nature is governed by two lunar-day clocks (24.8 hours); one driving one peak and the other driving the second peak. When oysters are subjected to the long-term CC conditions, one of the two-clock systems is depressed or only intermittently becomes active. Jpwever. the OCR rhythms by two to three oysters occurred arrhythmic patterns during the experiments and exhibited some evidence of weak rhythmicity of compared to those of a single oyster. It could be partly due to differences group effects.

Keywords

References

  1. Aldrich, J.C. 1997. Crab clocks sent for recalibration. Chronobiol. Int., 14, 435-437 https://doi.org/10.3109/07420529709001464
  2. Ameyaw-Akumfi, C. and E. Naylor. 1987. Temporal patterns of shell-gape in Mytilus edulis. Mar. Biol., 95, 237-242 https://doi.org/10.1007/BF00409011
  3. Barnwell, F.H. 1968. The role of rhythmic systems in the adaptation of fiddler crabs to the intertidal zone. Am. Zool., 8, 569-583 https://doi.org/10.1093/icb/8.3.569
  4. Beentjes, M.P. and B.G. Williams. 1986. Endogenous circatidal rhythmicity in the New Zealand cockle Chione stutchburyi (Bivalvia, Veneridae). Mar. Behav. Physiol, 12, 171-180 https://doi.org/10.1080/10236248609378644
  5. Bolt, S.R. and E. Naylor. 1985. Interaction of endogenous and exogenous factors controlling locomotor activity rhythms in Carcinus exposed to tidal salinity cycles. J. Exp. Mar. Biol, Ecol., 85, 47-56 https://doi.org/10.1016/0022-0981(85)90013-9
  6. Bougrier, S., B. Collet, P. Geairon, O. Geffard, M. Heral and J.M. Deslous-Paoli. 1998. Respiratory time activity of the Japanese oyster Crassostrea gigas (Thunberg). J. Exp. Mar. Biol. Ecol., 219, 205-216 https://doi.org/10.1016/S0022-0981(97)00181-0
  7. Dowse, H.B. and J.M, Ringo. 1989. The search for hidden periodicities in biological time series revisited. J. Theor. Biol., 139, 487-515 https://doi.org/10.1016/S0022-5193(89)80067-0
  8. Enright, J.T. 1975. Orientation in time: endogenous clocks. In: Kinne, O. (Ed.), Marine Ecology Vol. II. John Wiley & Sons, London, pp. 917-944
  9. Higgins, P.J. 1980. Effects of food availability on the valve movements and feeding behavior of juvenile Crassostrea virginica (Gmelin). I. Valve movements and periodic activity. J. Exp. Mar. Biol. Ecol, 45, 229-244 https://doi.org/10.1016/0022-0981(80)90060-X
  10. Kim, W.S., H.T. Huh, J.-G. Je and K.-N. Han. 2002. Evidence of two-clock control of the rhythm of endogenous oxygen consumption in the Washington clam, Saxidomus purpuratus. Mar. Biol. (in press)
  11. Kim, W.S., H.T. Huh, S.-H. Huh and T.W. Lee. 2001. Effect of salinity on endogenous rhythm of the Manila clam Ruditapes philippinarum (Bivalvia: Veneridae). Mar. Biol., 138, 157-162 https://doi.org/10.1007/s002270000430
  12. Kim, W.S., H.T. Huh, J.-H. Lee, H. Rumohr and C.H. Koh. 1999. Endogenous circatidal rhythm in the Manila clam Ruditapes philippinarum (Bivalvia: Veneridae). Mar. Biol., 134, 107-112 https://doi.org/10.1007/s002270050529
  13. Kim, W.S., J.M. Kim, S.K. Yi and H.T. Huh. 1997. Endogenous circadian rhythm in the river puffer fish Takifugu obscurus. Mar. Ecol. Prog. Ser., 153, 293-298 https://doi.org/10.3354/meps153293
  14. Kim, W.S., J.K. Jeon, S.H. Lee and H.T. Huh. 1996. Effects of pentachlorophenol (PCP) on the oxygen consumption rate of the river puffer fish Takifugu obscurus. Mar. Ecol. Prog. Ser., 143, 9-14 https://doi.org/10.3354/meps143009
  15. Klapow, L.A. 1972. Natural and artificial rephasing of a tidal rhythm. J. Comp. Physiol., 79, 233-258 https://doi.org/10.1007/BF00694219
  16. MMAF. 2000. Tide tables (coast of Korea). National Oceanographic Research Institute, Ministry of Maritime Affairs and Fisheries, Republic of Korea, pp. 163-168
  17. Morgan, S.G. 1996. Influence of tidal variation on reproductive timing. J. Exp. Mar. Biol. Ecol., 206, 236-251
  18. Morgan, J.D. and G.K. Iwama. 1990. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and Steelhead trout (Oncorhynchus mykiss) and fall Chincook salmon (Oncorhynchus tshawytscha). Can. J. Fish Aquat. Sci., 48, 2083-2094 https://doi.org/10.1139/f91-247
  19. Morton, B.S. 1977. The tidal rhythm of feeding and digestion in the Pacific oyster, Crassostrea gigas (Thunberg). J. Exp. Mar. Biol. Ecol., 26, 135-151 https://doi.org/10.1016/0022-0981(77)90103-4
  20. Morton, B. 1971. The diurnal rhythm and tidal rhythm of feeding and digestion in Ostrea edulis. Biol. J. Linn. Soc., 3, 329-342 https://doi.org/10.1111/j.1095-8312.1971.tb00526.x
  21. Naylor, E. 1997. Crab clocks re-wounded. Chronobiol. Int., 14, 427-430 https://doi.org/10.3109/07420529709001462
  22. Naylor, E. 1996. Crab clockwork: The case for interactive circatidal and circadian oscillators controlling rhythmic locomotor activity of Carcinus maenas. Chronobiol. Int., 13, 153-161 https://doi.org/10.3109/07420529609012649
  23. Naylor, E. 1976. Rhythmic behaviour and reproduction in marine animals, In: Newell, R.C. (Ed.), Adaptation to environment: essays on the physiology of marine animals, Butterworths, London, pp. 393-429
  24. Palmer, J.D. 1997. Duelling hypotheses: Circatidal versus circalunidian battle basics. Chronobiol. Int., 14, 337-346 https://doi.org/10.3109/07420529709001455
  25. Palmer, J.D. 1996. Time, tide and living clocks of marine organisms. Am. Sci., 84, 570-578
  26. Palmer, J.D. 1995a. The biological rhythms and clocks of intertidal animals. Oxford University Press, Oxford., pp 1-217
  27. Palmer, J.D. 1995b. Review of the dual-clock control of tidal rhythms and the hypothesis that the same clock governs both circatidal and circadian rhythms. Chronobiol. Int., 12, 299-310 https://doi.org/10.3109/07420529509057279
  28. Palmer, J.D. and B.G. Williams. 1993. An organic tidal rhythm with a peculiar phenotype. In: Aldrich, J.C. (Ed.), Quantified phenotypic responses in morphology and physiology. Proc. 27th Eur. Mar. Biol. Symp., pp. 121-127
  29. Palmer, R.E. 1980. Behavioral and rhythmic aspects of filtration in the bay scallop, Argopecten Irradians concentricus (Say), and the oyster, Crassostrea virginica (Gmelin). J. Exp. Mar. Biol. Ecol, 45, 273-295 https://doi.org/10.1016/0022-0981(80)90062-3
  30. Quayle, D.B. 1988. Pacific oyster culture in British Columbia. Can. Bull. Fish. Aquat. Sci., 218, 1-241
  31. Shumway, S.E. 1982. Oxygen consumption in oysters: An overview. Mar. Biol. Letters, 3, 1-23
  32. Shumway, S.E. and R. Koehn. 1982. Oxygen consumption in the American oyster Crassostrea virginica. Mar. Ecol. Prog. Ser., 9, 59-68 https://doi.org/10.3354/meps009059
  33. Webb, H.M. 1976. Interactions of daily and tidal rhythms, In: DeCoursey, D.J. (Ed.) Biological rhythms in the marine environment, University of South Carolina Press, Columbia, pp. 129-135
  34. Weiss, R.F. 1970. Thc solubility of nitrogen, oxygen, and argon in water and seawater. Deep Sea Res., 17, 721-735
  35. Williams, B G. 1998. The lack of circadian timing in two intertidal invertebrates and its significance in the circatidal/circilunidian debate. Chronobiol. Int., 15, 205-218 https://doi.org/10.3109/07420529808998684
  36. Willson, L.L. and L.E. Burnett. 2000. Whole animal and gill tissue cxygen uptake in the Eastern oyster; Crassostrea virginia: Effects of hypoxia, hypercapnia, air exposure, and in $\`{e}$ction with the protozoan parasite Perkinsus marinas. J. Exp. Mar. Biol, Ecol., 246, 223-240 https://doi.org/10.1016/S0022-0981(99)00183-5
  37. Wrona, F.J. and R.W. Davis. 1984. An imporved flow-through respirometer for aquatic macroinvertebrate bioenergetic research. Can. J. Fish. Aquat. Sci., 41, 380-385 https://doi.org/10.1139/f84-042
  38. Zann, L.P. 1973a. Interactions of the circadian and circatidal rhythms of the littoral gastropod Melanerita atramentosa Reeve. J. Exp. Mar. Biol. Ecol., 11, 249-261 https://doi.org/10.1016/0022-0981(73)90025-7
  39. Zann, L.P. 1973b. Relationships between intertidal zonation and circatidal rhythmicity in littoral gastropods. Mar. Biol, 18, 243-250 https://doi.org/10.1007/BF00367991

Cited by

  1. Effects of Water Temperature Changes on the Oxygen Consumption Rhythm in the Japanese eel, Anguilla japonica vol.20, pp.8, 2011, https://doi.org/10.5322/JES.2011.20.8.943