DOI QR코드

DOI QR Code

Effect of Body Size on Feeding Physiology of an Intertidal Bivalve, Glauconome chinensis Gray (Glauconomidae)

  • Lee Chang-Hoon (Red Tide Research Center, Kunsan National University) ;
  • Song Jae Yoon (Department of Oceanography, Kunsan National University) ;
  • Chung Ee-Yung (School of Marine Life Science, Kunsan National University)
  • Published : 2002.09.01

Abstract

To determine the effect of body size on the clearance rate and ingestion rate of small intertidal bivalves, Glauconome chinensis, feeding experiments were conducted on individuals of 12 different size classes, from 4 to 16 mm in shell length. Relationships between morphological parameters were also determined. The clearance and ingestion rates of G. chinensis responded similarly to their body size, ranging from 1.3 to 28.2 mL/hr/ind. and from 24.0 to 458.5, ${\mu}gC/hr/ind$., respectively. Both rates increased significantly (p<0.001) as shell length increased from 4 to 9 mm, although neither rate changed significantly when shell length was in the range from 12 to 16 mm. The weight-specific clearance rate $(CR_w)$ and ingestion rate $(IR_w)$ decreased with increasing body size, with values from 1.0 to 3.1 L/hr/g and from 17.9 to 51.3 mgC/hr/g, respectively. The $CR_w$ of G. chinensis was intermediate compared to those of larger bivalve species. The clearance rate (CR) relative to flesh dry weight (FDW) of G. chinensis were fitted well to the power function: $CR=0.43\times(FDW)^{0.71}\;(r^2=0.89)$. The exponent of fitting equation (0.71) of G. chinensis was higher than those of Mytilus edulis (Walne, 1972), Crassostrea gigas (Walne, 1972), and Placopecten magellanicus (MacDonald and Thompson, 1986).

Keywords

References

  1. Ameyaw-Akumfi, C. and E. Naylor. 1987. Temporal patterns of shell-gape in Mytilus edulis. Mar. Biol., 95, 237-242 https://doi.org/10.1007/BF00409011
  2. Babarro, J.M.F., M.J. Fernandez-Reiriz and U. Labarta. 2000. Feeding behavior of seed mussel Mytilus galloprovinciafis: Environmental parameters and seed origin. J. Shellfish Res., 19, 195-201
  3. Bayne, B.L., RJ. Thompson and J. Widdows. 1976. Physiology: I. In: Bayne, B.L. (ed.) Marine mussels: their ecology and physiology, Cambridge University Press. Cambridge, London, New York, Melbourne, pp. 121-206
  4. Brand, L.E., R.R.L. Guillard and L.S. Murphy. 1980. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J. Plankton Res., 3, 193-201 https://doi.org/10.1093/plankt/3.2.193
  5. Bjork, M. and M. Gilek. 1997. Bioaccumulation kinetics of PCB 31, 49 and 153 in the blue mussel, Mytilus edulis L. as a function of algal food concentration. Aquat. Toxicol., 38, 101-123 https://doi.org/10.1016/S0166-445X(96)00837-5
  6. Brewer, D.T. and K. Warburton. 1992. Selection of prey from a seagrass/mangrove environment by golden lined whiting, Sillago analis (Whitney). J. Fish Biol., 40, 257-271 https://doi.org/10.1111/j.1095-8649.1992.tb02571.x
  7. Brewer, D.T. and R.C. Willan. 1985. Glauconome virens (Bivalvia: Glauconomidae) siphons: An imponant food for whiting (Sillago analis) in southern Queensland. J. Molluscan Stud., 51, 350-352
  8. Bougrier, S., A.J.S. Hawkins and M. He$\'{e}$ral. 1997. Preingestive selection of different microalgal mixtures in Crassostrea eieas and Mytilus edulis, analysed by flow cytometry. Aquaculture, 150, 123-134 https://doi.org/10.1016/S0044-8486(96)01457-3
  9. Chipman, W.A. and J.G. Hopkins. 1954. Water filtration by the bay scallop, Pecten irradians, as observed with the use of radioactive plankton. Biol. Bull. Mar. Biol. Lab., Woods Hole, 107, 80-91 https://doi.org/10.2307/1538632
  10. Clausen, I. and H.U. Riisg$dota$rd. 1996. Growth, filtration and respiration in the mussel Mytilus edulis: no evidence for physiological regulation of the filter-pump to nutritional needs. Mar. Ecol. Prog. Ser., 141, 37-45 https://doi.org/10.3354/meps141037
  11. Cranford, P.J. and P.S. Hill. 1999. Seasonal variation in food utilization by the suspension-feeding bivalve molluscs Mytilus edulis and Placopecten magellanicus. Mar. Ecol. Prog. Ser., 190, 223-239 https://doi.org/10.3354/meps190223
  12. Frost, B.W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calaaus pacificus. Limnol. Oceanogr., 17, 805-815 https://doi.org/10.4319/lo.1972.17.6.0805
  13. Gtullard, R.R.L. and J.H. Ryther. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Grun. Can. J. Microbiol., 8, 229-239 https://doi.org/10.1139/m62-029
  14. Kim, W.S., H.T. Huh, J.-H. Lee, H. Rumohr and C.H. Koh. 1999. Endogenous circatidal rhythm in the Manila clam Ruditapes philippinarum (Bivalvia: Veneridae). Mar. Biol., 134, 107-112 https://doi.org/10.1007/s002270050529
  15. Lassus, P., M. Bardouil, B. Beliaeff, P. Masselin, M. Naviner and P. Truquet. 1999. Effect of a continuous supply of the toxic dinoflagellate Alexandrium minutum Halim on the feeding behavior of the pacific oyster (Crassostrea gigas Thunberg). J. Shellfish Res., 18, 211-216
  16. Li, S.C., W.X. Wang and D.P.H. Hsieh. 2001. Feeding and absorption of the toxic dinoflagellate Alexandrium tamarense by two marine bivalves from the South China Sea. Mar. Biol., 139, 617-624 https://doi.org/10.1007/s002270100613
  17. MacDonald, B.A. and R.J. Thompson. 1986. Influence of temperature and food availability in the ecological energetics of the giant scallop Placopecten magellanicus. III. Physiological ecology, the gametogenic cycle and scope for growth. Mar. Biol., 93, 37-48 https://doi.org/10.1007/BF00428653
  18. Matsuyama, Y., T. Uchida and T. Honjo. 1997. Toxic effects of the dinoflagellate Heterocapsa circularisquama on clearance rate of the blue mussel Mytilus galloprovincialis. Mar. Ecol. Prog. Ser., 146, 73-80 https://doi.org/10.3354/meps146073
  19. Mills, D. 2000. Combined effects of temperature and algal concentration on survival, growth and feeding physiology of Pinctada maxima (Jameson) spat. J. Shellfish Res., 19, 159-166
  20. Palmer, J.D. 1995. The biological rhythms and clocks of intertidal animals. Oxford University Press, Oxford
  21. Sar, G., C. Romano, M. Caruso and A. Mazzola. 2000. The new lessepsian entry Brachidontes pharaonis (Fischer P., 1870) (Bivalvia, Mytilidae) in the western Mediterranean: A physiological analysis under varying natural conditions. J. Shellfish Res., 19, 967-977
  22. Sicard, M.T., A.N. Maeda-Martinez, P. Ormart, T. Reynoso Granados and L. Carvalho. 1999. Optimum temperature for growth in the catarina scallop (Argopecten ventricosus-circularis, Sowerby II, 1842). J. Shellfish Res., 18, 385-392
  23. Strychar, K.B. and B.A. MacDonald. 1999. Impacts of suspended peat particles on feeding and absorption rates in cultured eastern oysters (Crassostrea virginica, Gmelin). J, Shellfish Res., 18, 437-444
  24. Thompson, R.J. and B.L. Bayne. 1972. Active metabolism associated with feeding in the mussel Mytilus edulis L. J. Exp. Mar. Biol. Ecol., 9, 111-124 https://doi.org/10.1016/0022-0981(72)90011-1
  25. Walne, P.R. 1972. The influence of current speed, body size and water temperature on the filtration rate of five species of bivalves. J. Mar. Biol. Ass. U.K., 52, 345-374 https://doi.org/10.1017/S0025315400018737
  26. Werner, I. and J.T. Hollibaugh. 1993. Potamocorbula amurensis: Comparison of clearance rates and assimilation efficiencies for phytoplankton and bacterioplankton. Limnol. Oceanogr., 38. 949-964 https://doi.org/10.4319/lo.1993.38.5.0949
  27. Winter, J.E. 1973. The filtration rate of Mytilus edulis and its dependence on algal concentration, measured by a continuous automatic recording apparatus. Mar. Biol., 22, 317-328
  28. Yukihira, H., D.W. Klumpp and J.S. Lucas. 1998. Effects of body size on suspension feeding and energy budgets of the pearl oysters Pinctada margaritifera and P. maxima. Mar. Ecol. Prog. Ser., 170, 119-130 https://doi.org/10.3354/meps170119
  29. Zar, J.H. 1984. Biostatistical analysis. 2nd ed. Prentice-Hall International, Inc., Englewood Cliffs, NJ. 718pp

Cited by

  1. Filtration of Red Tide Dinoflagellates by an Intertidal Bivalve, Glauconome chinensis Gray: An Implication for the Potentials of Bivalves in Tidal Flats vol.6, pp.2, 2002, https://doi.org/10.5657/fas.2003.6.2.066