DOI QR코드

DOI QR Code

Self-Diffusion Coefficients of Colloidal Association Structures in ADS/OTAC Mixed Aqueous Solutions by Pulsed (Field) Gradient Spin Echo-NMR

Pulsed (Field) Gradient Spin Echo (PGSE) NMR에 의한 ADS/OTAC 혼합 수용액에서의 콜로이드 회합체의 자가 확산 계수

  • Kim, Hong-Un (Department of Chemical Engineering, Chung-Ang University) ;
  • Lim, Kyung-Hee (Department of Chemical Engineering, Chung-Ang University) ;
  • Kim, Eun-Hee (Magnetic Resonance Team, Korea Basic Science Institute) ;
  • Cheong, Chae-Joon (Magnetic Resonance Team, Korea Basic Science Institute)
  • 김홍운 (중앙대학교 공과대학 화학공학과) ;
  • 임경희 (중앙대학교 공과대학 화학공학과) ;
  • 김은희 (한국기초과학지원연구원) ;
  • 정재준 (한국기초과학지원연구원)
  • Published : 2002.12.31

Abstract

Self-diffusion coefficients of colloidal ass9Ciation structures in the aqueous solutions of anionic ammonium dodecyl sulfate (ADS) and cationic octadecyltrimethylammonium chloride (OTAC) surfactants were measured by pulsed-gradient spin echo NMR. The results were interpreted on the basis of the ADS/OTAC/water phase diagram. Crossing the phase boundaries, significant changes in self diffusion coefficients were observed and well correlated to the phase diagram. For the micelles their apparent radii were obtained from Stokes-Einstein equation. Their values were 15 for the ADS micelles and 54 ${{\AA}}$ for the OTAC micelles, respectively. For vesicles which were formed spontaneously at different relative amounts of the surfactants and total surfactant concentrations, the radius was measured as 50 to 200 nm. This result is in fair agreement with those by TEM and light scattering.

Keywords

References

  1. M. J. Rosen, 'Mixed Surfactant Systems(P. M. Holland and D. N. Roubingh, ed.)', ACS Symp., vol. 501, p. 316, Am. Chem. Soc., Washington, DC (1992) https://doi.org/10.1021/bk-1992-0501.ch021
  2. Z. J. Yu and G. X. Zhao, J. Colloid Interface Sci. 130, 414 (1989) https://doi.org/10.1016/0021-9797(89)90118-5
  3. Z. J. Yu and G. X. Zhao, J. Colloid Interface Sci. 156, 325 (1993) https://doi.org/10.1006/jcis.1993.1119
  4. G. X. Zhao, Y. Z. Chen, J. G. Ou, B. S. Tien, and Z. M. Huang, Acta Chim Sinsica 38, 409 (1980)
  5. P. M. Holland and D. N. Roubingh, J. Phys. Chem. 87, 1984 (1983) https://doi.org/10.1021/j100234a030
  6. D. N. Roubingh, 'Solution Chemistry of Surfactant(K. L. Mittal, ed.)', vol. 1, Plenum Press, New York (1979)
  7. H. Matsuki, M. Aratono, S. Kaneshina, and K. Motomura, J. Colloid Interface Sci. 191, 120 (1997) https://doi.org/10.1006/jcis.1997.4924
  8. M. J. Rosen, D. Friedmann, and M. Gross, J. Phys. Chem 68, 3219 (1983)
  9. J. B. Huang and G. X. Zhao, Colloid PoIym. Sci. 273, 156 (1988)
  10. K.-H. Kang, H.-U. Kim, K.-H. Lim, and N.-H. Jeong, Bull. Korean Chem. Soc., 22(9), 1009 (2001)
  11. A.-M. Misselyn-Bauduin, A. Thibaut, J. Grandjean, G. Broze, and R. Jerome, J. Colloid Interface Sci., 238, 1 (2001) https://doi.org/10.1006/jcis.2001.7451
  12. E. I. Hahn, Phys. Rev., 80, 580 (1950) https://doi.org/10.1103/PhysRev.80.580
  13. D. W. McCall, D. C. Douglass, and E. W. Enderson, Ber. Bunaenges. Phys. Chem., 67, 366 (1963)
  14. E. O. Stejskal and J. E. Tanner, J. Chem. Phys., 42, 288 (1965) https://doi.org/10.1063/1.1695690
  15. J. Charvolin, J. Chem Phys., 58, 3999 (1978) https://doi.org/10.1063/1.1679756
  16. G. J. T. Tiddy, J. Colloid Interface Sci., 53, 461 (1975) https://doi.org/10.1016/0021-9797(75)90063-6
  17. P. Stilbs, J. CoIloid Interface Sci., 89, 547 (1982) https://doi.org/10.1016/0021-9797(82)90206-5
  18. P.-G. Nilsson and B. Lindman, J. Phys. Chem., 88, 4764 (1984) https://doi.org/10.1021/j150664a063
  19. E. O. Stejskal, Adv. Mol. Relaxation Processes, 3, 27 (1972) https://doi.org/10.1016/0001-8716(72)80023-3
  20. B. Lindman and P. Stilbs, 'Microemulsion (P. Botherel and S. Friberg ed.)', CRC Press (1986)
  21. F. john, E. James, and Roberts, J. Appl. Polymer Sci., 58, 271 (1995) https://doi.org/10.1002/app.1995.070580206
  22. K. L. Walther, M. Gradzielski, H. Hoffmann, and A. Wakaun, J. Colloid Interface Sci., 153, 272 (1992) https://doi.org/10.1016/0021-9797(92)90318-G
  23. W. L. F. Armarego and D. D. Perrin, 'Purification of Laboratory Chemicals', 4th ed., Butterworth-Heinemann, Oxford (1996)
  24. G. FIeischer. K. Gratz, J. Karger, H. W, Meyer, and K. Quitzsch, J. CoIIoid Interfaces Sci., 152, 281 (1992) https://doi.org/10.1016/0021-9797(92)90027-J
  25. S. Braun, H.-O. Kalinowski, and S. Berger, '100 and More Basic NMR Experiments; A Practical Course', Ch. 11, p. 349-351, VCH, (1998)
  26. B. Lindman, U. Olsson, and Q. $S\ddot oderman$, 'Handbook of Microemulsion Science and Technology', Ch. 10, p. 309-356 (1998)
  27. H. Walderhaug and B. $Nystr\ddot om$, Colloid Surf. A, 149, 379 (1999) https://doi.org/10.1016/S0927-7757(98)00415-4
  28. T. Kato, J. Phys. Chem., 89. 5750 (1985) https://doi.org/10.1021/j100272a035
  29. O. Annunziata, L. Costantino, G. D'Errico, L. Paduano, and V. Vitagliano, J. Colloid Interface Sci. 216, 16 (1999) https://doi.org/10.1006/jcis.1999.6269
  30. A. Caria, O. Regev, and A. Khan, J. Colloid Interface Sci., 200, 19 (1998) https://doi.org/10.1006/jcis.1997.5310
  31. A.-M. Misselyn-Bauduin, A. Thibaut, J. Grandjean, G. Broze, and R. Jerome, Langmuir, 16, 4430 (2000) https://doi.org/10.1021/la991020l
  32. H.-U. Kim, K.-H. Kang, and K.-H. Lim, manuscript in preparation (2002)
  33. D. F. Evans and H. Wennerstrom, 'The Colloidal Domain', p. 341, VCH Publishers Inc., New York (1994)