에멀죤 연료의 연소 배출가스특성 및 연소 효율에 관한 분석평가

An Analytical Evaluation on the flue Gas and Combustion Efficiency of Emulsion Fuel

  • 박현미 (한국과학기술연구원 특성분석센터) ;
  • 어연우 (한국과학기술연구원 특성분석센터) ;
  • 백승우 (한국과학기술연구원 특성분석센터) ;
  • 박일룡 (한국과학기술연구원 특성분석센터) ;
  • 팽기정 (연세대학교 화학과) ;
  • 김영만 (한국과학기술연구원 특성분석센터) ;
  • 이강봉 (한국과학기술연구원 특성분석센터)
  • Park, Hyun-Mee (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Eo, Yun-Woo (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Baig, Seung-Woo (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Park, Il Yong (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Paeng, Ki Jung (Department of Chemistry, Yonsei University) ;
  • Kim, Young-Man (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Lee, Kang-Bong (Advanced Analysis Center, Korea Institute of Science and Technology)
  • 투고 : 2002.06.27
  • 발행 : 2002.10.25

초록

중유 및 물이 혼합된 에멀젼 연료의 연소 특성이 평가되어졌다. 에멀젼 연료의 연소가스 중 $SO_x$의 농도는 순수한 중유 연소가스의 57%로 감소되었으며, 에멀젼 연료의 연소 가스 중 $NO_x$의 농도는 순수한 중유 연소가스의 67%로 감소되었다. 에멀젼 연료 연소가스에서의 $SO_x$의 감소는 에멀젼 연료 중 포함되어있는 계면 활성제중의 salt와의 반응에 기인하는 것으로 사료된다. 또한, 에멀젼 연료의 연소 효율은 순수한 중유보다 약 6% 정도 더 높은 것으로 평가되었다.

The combustion behavior of heavy oil and its emulsion with water was evaluated. The concentration of $SO_x$ in the combustion gas of emulsion oil was reduced to 57% with respect to that of the combustion gas from neat heavy oil. Also, the concentration of $NO_x$ in the combustion gas of emulsion oil was reduced to 67% with respect to that of the combustion gas of neat heavy oil. These reductions of $SO_x$ in the combustion gas of emulsion oil seems to be due to the reaction with salts included in surfactant of emulsion oil. Also, the combustion efficiency of emulsion oil is evaluated to be about 6% higher than that of neat heavy oil.

키워드

참고문헌

  1. P. Brimblecombe, 'Air composition and chemistry', Cambridge University Press, NY, USA( 1995)
  2. S. T. Holgate, 'Air pollution and health, London', Academic Press, NY, USA( 1999)
  3. H. Jahani, and S. R. Gollanhali, Combust. Flame, 37, 145 (1980)
  4. M. A. A. Nazha, and R. J. Crookes, In 'Twentieth Symposium(International) on Combustion', The combustion Institute, Pittsburgh, 2001-2010(1984)
  5. I. Ahmad, and S. R. Gollahali, Paper AIAA 93-0131. 31st Aerospace Science Meeting and Exhibit, Reno, NV (1993)
  6. J. A. Kozinski, Combust. Flame, 96, 249 (1994)
  7. S. R. Gkkahali, M. K. Nasrallah, and J. H Bhashi, Combust. Flame, 55, 93 (1984)
  8. A. T. S. Cunningham, B. J. Gliddon, and R. T. Squires, In 'Conference on Combustion in Engineering', Institution of Mechanical Engineers, London, 147-154 (1983)
  9. F. L. Dryer, In 'Sixteenth Symposium (International) on Combustion', The Combustion Institute, Pittsburgh, 279-295(1997)
  10. H.-M. Park, Y.-M. Kim, D.-w. Lee, and K.-B. Lee, J. Chromatography A, 829, 215 (1998)
  11. M. H. Lee, 'Standard analytical methods on air contamination', 295-310, Sinkwang press, Korea (1999)
  12. M. H. Lee, 'Standard analytical methods on air contamination', 317-335, Sinkwang press, Korea (1999)
  13. S. J. Kerber, T. L. Barr, G. P. Mann, W. A. Brantly, E. Papazoglou, and J. C. Mitchell J. of Materials Engineering and Performance, 7, 329(1998)
  14. C. Sarzanini, J. of Chromatography A, 2002 in press 15. J. M. Ballester, N. Fueyo, and C. Dopazo, flue, 75, 695 (1996)