반응셀 유도결합플라스마 질량분석분석기를 이용한 칼슘 동위원소비율의 측정과 동위원소희석법의 적용

Application of Dynamic Reaction Cell - Inductively Coupled Plasma Mass Spectrometry for the Determination of Calcium by Isotope Dilution Method

  • 서정기 (한국표준과학연구원 무기분석그룹) ;
  • 임용현 (한국표준과학연구원 무기분석그룹) ;
  • 황의진 (한국표준과학연구원 무기분석그룹) ;
  • 이상학 (경북대학교 자연과학대 화학과)
  • Suh, Jungkee (Division of Chemical Metrology and Materials Evaluation, Korea Research Institute of Standards and Science) ;
  • Yim, Yonghyeon (Division of Chemical Metrology and Materials Evaluation, Korea Research Institute of Standards and Science) ;
  • Hwang, Euijin (Division of Chemical Metrology and Materials Evaluation, Korea Research Institute of Standards and Science) ;
  • Lee, Sanghak (Department of Chemistry, Kyungpook National University)
  • 투고 : 2002.06.17
  • 발행 : 2002.10.25

초록

반응셀이 장치된 유도결합플라스마 사중극자 질량분석기를 이용하여 자연적으로 존재하는 6개의 칼슘 동위원소의 검출특성에 관한 연구를 수행하였다. 동적반응셀 (dynamic reaction cell, DRC)장치를 이용한 실험에서 최적의 신호 대 잡음비를 얻기 위한 실험조건을 조사하였다. 본 실험을 통해서 반응기체로서 0.7 mL/min의 $NH_3$를 사용하고 rejection parameter (RPq)값을 0.6으로 사용함으로써, Ca의 질량위치인 m/z 40, 42, 43, 44, 46 그리고 m/z 48의 위치에서 잠재적인 간섭이온인 $Ar^+$, ${CO_2}^+$, ${NO_2}^+$, $CNO^+$ 등이 효과적으로 제거됨을 확인하였다. 검출한계는 동위원소 $^{40}Ca$, $^{42}Ca$, $^{43}Ca$, $^{44}Ca$, 및 $^{48}Ca$에 대해서 각각 1, 29, 169, 34, and 15 pg/g으로 얻을 수 있었다. 이러한 실험조건 하에서 국제비교분석을 위해서 영국의 LGC (Laboratory of the Government Chemistry, Queens Road, Teddington, England)로부터 공급된 합성식품분해물질 중의 Ca을 동위원소희석법을 적용하여 분석하였다. 동위원소희석법에 의한 측정의 불확도는 ISO/GUM과 EURACHEM지침서에 따라 평가하였다. 측정된 시료중의 Ca의 농도와 불확도는 ($66.4{\pm}1.2$) mg/kg이었다. 또한 본 실험방법의 유효성을 확인하기 위해 농도가 인증된 표준시료 NRCC (National Research Council of Canada)의 SLRS-3 (riverine water CRM)과 NIST (National Institute of Science and Technology)의 SRM1643d (trace element in water)를 분석하였다.

Inductively Coupled Plasma Dynamic Reaction Cell Quadrupole Mass Spectrometry (ICP-DRC-QMS) was characterized for the detection of the six naturally occurring calcium isotopes. The effect of the operating conditions of the DRC system was studied to get the best signal-to-noise ratio. This experiment shows that the potentially interfering ions such as $Ar^+$, ${CO_2}^+$, ${NO_2}^+$, $CNO^+$ at the calcium masses m/z 40, 42, 43, 44 and 48 were removed by flowing $NH_3$ gas at the rate of 0.7 mL/min $NH_3$ as reactive cell gas in the DRC with a RPq value (rejection parameter) of 0.6. The limits of detection for $^{40}Ca$, $^{42}Ca$, $^{43}Ca$, $^{44}Ca$, and $^{48}Ca$ were 1, 29, 169, 34, and 15 pg/mL, respectively. This method was applied to the determination of calcium in synthetic food digest samples (CCQM-P13) provided by LGC for international comparison. The isotope dilution method was used for the determination of calcium in the samples. The uncertainty evaluation was performed according to the ISO/GUM and EURACHEM guidelines. The determined mean concentration and its expanded uncertainty of calcium was ($66.4{\pm}1.2$) mg/kg. In order to assess our method, two reference samples, Riverine Water reference sample (NRCC SLRS-3) and Trace Elements in Water reference sample (NIST SRM 1643d), were analyzed.

키워드

참고문헌

  1. S. H. Tan, G. Horlick, Appl. Spectrosc., 40, 445-460, (1986).
  2. D. R. Bandura, V. I. Baranov, S. D. Tanner, Fresensius J. Anal. Chem, 370, 454-470, (2001).
  3. I. Feldmann, N. Jakubowski, D. Stuewer, Fresensius J. Anal. Chem, 365, 415-421, (1999).
  4. S. D. Tanner, V. I. Baranov, At. Spectrosc., 20, 45-52, (1999).
  5. V. I. Baranov, S. D. Tanner, J. Anal. at. Spectrom., 14, 1133-1142, (1999).
  6. I. Feldmann, N. Jakubowski, D. Stuewer, Fresenius J. Anal. Chem. 365, 415. (1999)
  7. I. Feldmann, N. Jakubowski, C. Thomas, D. Stuewer, Fresenius J. Anal. Chem. 365, 422, (1999).
  8. P. R. D. Mason, K. Kaspers, M. J. van Bergen, J. Anal. At. Spectrom., 14, 1067, (1999).
  9. S. D. Tanner, V. I. Baranov, At. Spectrosc., 20, 45, (1999).
  10. U. Vollkopf, K. Klemm, M. Pfluger, At. Spectrosc., 20, 53, (1999).
  11. Guide to the expression of Uncertainty in Measurement', ISBN 92-67-10188-9, International Organization for Standardization, Gen?ve, (1995).
  12. Quantifying Uncertainty in Analytical Measurement', ISBN 0-948926-08-2, Crown Copyright, EURACHEM, (1995).
  13. Rosman KJR, Taylor PDP(eds), J. Anal. At. Spectrom. 14, 5N-23N, (1999).
  14. T. W. May, R. H. Weidmeyer, At. spectrosc., 19, 150-155, (1998).
  15. Yu-Ling Chang, Shiuh-Jen Jiang, J. Anal. At. Spectrom., 16, 1434-1438, (2001).
  16. Jens J. sloth, Erick H. Larsen, J. Anal. At. Spectrom., 15, 669-672 (2000).
  17. E. R. Denoyer S.D.Tanner, U.Voellkopf, Spectroscopy, 14, 2, (1999).
  18. Howard E. Tayor (eds), 'Inductively Coupled Plasma Mass Spectrometry, Practices and Techniques', Copyright(c) Academic Press, Chapter10, pp152, (2001).
  19. J. I. Garcia Alonso, Anal. Chim. Acta, 312, 57, (1995).
  20. J. Diemer, J. Vogl, C. R. Quetel, T. Linsinger, P. D. P. Tayor, A. Lamberty, J. Pauwels, Fresenius J. Anal. Chem, 370, 492-498, (2001).
  21. De Bievere P, Fresenius J. Anal. Chem, 337, 776-771, (1990).
  22. Heuman KG (eds), 'Inorganic Mass Spectrometry', Wiley, New York, pp301-376, (1985).
  23. R. L. Watters, Jr., K. R. Eberhardt, E. S. Beary, J. D. Fasett, Metrologia, 34, 87, (1997).
  24. Becker JS, Kerl W, Dietze HJ, Anal. Chim. Acta, 387, 145, (1999).
  25. De Bievre P, Fresenius J. Anal. Chem, 350, 277, (1994).
  26. Kragten J, Analyst, 119, 2161, (1994).