Fine Structural Approach of Granular Gland Regeneration after Skin Injury in Bombina orientalis

Bombina orientalis 피부손상 후 과립선 재생에 관한 미세구조적 연구

  • Jeong, Moon-Jin (Cellular Immunology Section, Oral Infection & Immunity Branch, National Institute of Dental & Craniofacial Research (NIDCR), NIH) ;
  • Lim, Do-Seon (Department of Dental Hygiene, Seoul Health College) ;
  • Moon, Myung-Jin (Department of Biological Sciences, Dankook University)
  • 정문진 (미국 국립보건원 치구개안면연구소 구강감염 및 면역부 세포면역연구실) ;
  • 임도선 (서울보건대학 치위생과) ;
  • 문명진 (단국대학교 생물학과)
  • Published : 2002.09.01

Abstract

Granular gland regeneration in the toad after dorsal skin wound histologically was examined using scanning and transmission electron microscopy. After cutaneous wounds were induced by excision, animals were maintained in special cages for up to 20 days. In transmission electron microscopy (TEM), newly formed granular gland, though poorly developed, was seen on 4 day after injury. Epithelial cells moved toward apical region of newly formed gland. The cells had smooth surface and were not connected to other cells by desmosomes. Mitochondria rich cell (MRC) possessing long cytoplasmic processes formed a gland cavity and hemidesmosomes were found under the cell processes. Basal cavity of newly formed gland consisted of MRC, pro-granular producing cells (pGPC), and granular producing cell (GPC). Moreover it was observed that xanthophores moved to the base of the epithelial tissue on 10 day after the injury. These cells contained numerous pterinosomes and carotenoid vesicles. Immature pterinosomes were large and carotenoid vesicles were moderately electron dense. On 13 day after the injury, xanthophores contained abundant carotinoid vesicles and lammelated pterinosomes. Iridophores were also observed adjacent the developing xanthophores on 16 day post-injury. These observations indicated that regeneration of granular gland from glandular precursor cells during wound healing and subsequent expansion of the glandular cells might be dependent on maturation and proliferation of these newly formed cells.

두꺼비 등 피부손상 후 과립선의 재생과정을 주사전자현미경과 투과전자현미경으로 관찰하였다. 절개에 의하여 피부손상을 가한 후 실험을 위하여 특수히 제작된 cage 내에서 최대 20일간 사육하였다. 투과전자현미경 관찰에서 손상 4일 후 미성숙 형태의 신생 과립선이 관찰되었으며, 상피세포는 신생 과립선의 첨단부로 이동하여 있었다. 상피세포의 표면은 편평하였으며 desmosome 에 의해 서로 연결되어 있지 않았다. 미토콘드리아를 많이 함유한 세포돌기 (MRC)들이 선의 내강을 형성하고 있었고, 이들 돌기에서는 hemidesmosome이 관찰되었다. 신생선의 기저강은 MRC, 과립형성전세포 및 과립형성 세포 등으로 이루어져 있었다. 특히, 손상 후 10일에 xanthophore가 상피세포의 기저부로 이동하여 있음이 관찰되었다. 이들 세포는 다수의 크기가 큰 pterinosome 과 중등도의 전자밀도를 가진 carotenoid vesicle을 포함하고 있었다. 손상 후 13일에, xanthophore는 많은 carotinoid vesicle과 lammelated pterinosomes을 포함하고 있었다. Iridophore는 손상 16일에 분화중인 xanthophore 주변에서 관찰되었다. 이러한 소견은 손상으로부터의 회복 과정에 선조세포(glandular precursor cell)로부터 과립선이 재생되며, 선세포의 팽대는 이들 신생 세포의 성숙 및 증식에 의한 것을 의미한다.

Keywords

References

  1. Al-Barwari SE, Potten CS: Regeneration and dose-response characteristics of irradiated mouse dorsal epidermal cells. Int J Radiat Biol Relat Stud Phys Chem Med 30(3): 201-216, 1976 https://doi.org/10.1080/09553007614550981
  2. Argyris T: Kinetics of epidermal production during epidermal regeneration following abrasion in mice. Am J Pathol.83(2): 329-340, 1976
  3. Burford-Mason AP, Cummins MM, Brown DH, Macan A, Dardick I: Immunohistochemical analysis of the proliferative capacity of duct and acinar cells during ligated induced atrophy and subsequent regeneration of rat parotid gland. J Oral Pathol Med 22: 440-446, 1993 https://doi.org/10.1111/j.1600-0714.1993.tb00122.x
  4. Clark AJ: The mammary gland as a bioreactor: expression, processing, and production of recombinant proteins. J Mammary Gland Biol Neoplasia 3(3): 337-350, 1998 https://doi.org/10.1023/A:1018723712996
  5. Clark AJ: Ectopic hormone production. Baillieres Clin Endocrinol Metab 2(4): 967-986, 1988 https://doi.org/10.1016/S0950-351X(88)80026-0
  6. Cummins M, Dardick I, Brown D, Burford-Mason A: Obstructive sialadenitis: A rat model. J Otolaryngology 32: 50-56, 1994
  7. Goss RJ, Grimes LN: Epidermal down growths in regenerating rabbit ear holes. J Morphol 146(4): 533-542, 1975 https://doi.org/10.1002/jmor.1051460408
  8. Jeong MJ, Moon MJ: Early healing responses of the skin wounds in the korean fire-bellied toad, Bombina orientalis. Kor J Electron Micros 28(3): 329-343, 1998
  9. Juhasz I, Murphy GF, Yan HC, Herlyn M, Albelda SM: Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo. Am J Pathol 143(5): 1458-1469, 1993
  10. Karnovsky MJ: The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol 35: 213-236, 1967 https://doi.org/10.1083/jcb.35.1.213
  11. Leeson TS, Leeson CR: Myoepithelial cells in the exorbital lacrimal and parotid glands of the rat in frozen-etched replicas. Am J Anat 132(2): 133-145, 1971 https://doi.org/10.1002/aja.1001320202
  12. Lobitz WC, Holyoke JB, Montagna W: Responses of the human ecrine sweat duct to controlled injury. J Invest Dermatol 23: 329-344, 1954 https://doi.org/10.1038/jid.1954.42
  13. Miller SJ, Burke EM, Rader MD, Coulombe PA, Lavker RM: Re-epithelialization of porcine skin by the sweat apparatus. J Invest Dermatol 110: 13-19, 1998 https://doi.org/10.1046/j.1523-1747.1998.00087.x
  14. Morimura A: Immunohistochemical study on regeneration of the rat submandibular gland. Shikwa Gakuho 88: 511-528, 1988
  15. Morinaga S, Nakajima T, Shimosato Y: Normal and neoplastic myoepithelial cells in salivary glands: an immunohistochemical study. Hum Pathol 18(12): 1218-1226, 1987 https://doi.org/10.1016/S0046-8177(87)80404-5
  16. Redman RS: Myoepithelium of salivary glands. Micros Res Techni 27: 25-45, 1994 https://doi.org/10.1002/jemt.1070270103
  17. Takahashi S, Wakita M: Regeneration of the lobular duct and acinus in rat submandibular glands after laser irradiation. Arch Histol Cytol 56: 199-206, 1993 https://doi.org/10.1679/aohc.56.199
  18. Takahashi S, Wakita M: Cytokeratin expression during regeneration of the intralobular duct in rat submandibular glands after YAG laser irradiation. Arch Histol Cytol 57(2): 167-173, 1994 https://doi.org/10.1679/aohc.57.167
  19. Takahashi S, Domon T, Yamamoto T, Wakita M: Regeneration of myoepithelial cells in rat submandibular glands after yttrium aluminium garnett laser irradiation. J Exp Path 78: 91-99, 1997 https://doi.org/10.1046/j.1365-2613.1997.d01-244.x
  20. Takahashi S, Schoch E, Walker NI: Origin of acinar cell regeneration after atrophy of the rat parotid induced by duct obstruction. J Exp Path 79: 293-301, 1998 https://doi.org/10.1046/j.1365-2613.1998.710405.x
  21. Tamarin A: Submaxillary gland recovery from obstrction. II. Electron microscopic alterations of acinar cells, J Ultrast Res 34: 288-302, 1971a https://doi.org/10.1016/S0022-5320(71)80073-4
  22. Tamarin A: Submaxillary gland recovery from obstruction. Overall changes and electron microscopic alteration of glandular duct cells. J Ultrastruc Res 34: 276-287, 1971b https://doi.org/10.1016/S0022-5320(71)80072-2
  23. Thevenet A: Cicatrisation de la peau d'embryon de 7 jours cultivee in vitro. Arch Microsc Morphol Exp 72: 23-46, 1983
  24. Walker NI,Gobe GC: Cell death and cell proliferation during atrophy of the rat parotid gland induced by duct obstruction. J Pathol 153: 333-344, 1987 https://doi.org/10.1002/path.1711530407