DOI QR코드

DOI QR Code

Analysis of Oscillatory Behaviors in Shock Waves and Development of M-AUSMPW+

충격파에서의 물성치 진동현상에 대한 분석과 M-AUSMPW+ 수치기법 개발


Abstract

The M-AUSMPW+ scheme that can capture shock waves exactly with monotonic characteristic is developed by analyzing the cause of oscillation in shock regions. Firstly shock-capturing characteristics of general FVS including the AUSM-type schemes are investigated in detail, according to the different between a cell-interface and a sonic transition position. The cause of oscillation is the improper numerical dissipation that could not represent the real physics. The M-AUSMPW+ could capture shocks exactly without oscillatory behaviors in considering the sonic transition position and an cell-interface position

각 수치기법별로 충격파 주위에서 발생하는 진동현상의 원인을 분석하여 단조성을 유지하면서 충격파를 정확하게 포착할 수 있는 M-AUSMPW+를 개발하였다. 제어면과 음속천이 점 위치에 대하여 FVS계열 수치 기법과 ASUM계열 수치기법들이 충격파 포착시 나타내는 특성들을 분석하였고 충격파 주위의 수치진동의 원인을 찾아내었다. 음속천이점의 위치를 계산하고 이를 통해 충격파 영역에서의 물리 현상을 정확하게 반영함으로써 기존 AUSM계열 수치기업이 가지는 충격과 주위의 물성치 진동현상을 근본적으로 제거 할 수 있었다.

Keywords

References

  1. J. L. Steger, and R. F. Warming, "Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-Difference Methods," J. of Computational Physics, Vol. 40, 1981, pp.263-293. https://doi.org/10.1016/0021-9991(81)90210-2
  2. B. van Leer, "Flux-vector Splitting for the Euler Equation," Lecture Notes in physics, Vol. 170, 1982, pp.507-512. https://doi.org/10.1007/3-540-11948-5_66
  3. J, Gressier, P. Villedieu, and J-M Moshetta, "Positivity of Flux Vector Splitting Schemes," J. of Computational Physics, Vol. 155, 1999, pp.199-220. https://doi.org/10.1006/jcph.1999.6337
  4. P. L. Roe, "Approximate Riemann Solvers, Parameter Vectors and Difference Schemes," J. of Computational Physics, Vol. 43, 1981, pp.357-372. https://doi.org/10.1016/0021-9991(81)90128-5
  5. B. Einfeldt, "On Godunov-Type Method for Gas Dynamics," SIAM J. Numer Anal., Vol. 25(2), 1988, pp.294-318. https://doi.org/10.1137/0725021
  6. M. S. Liou, "A Sequel to AUSM: AUSM+," J. of Computational Physics, Vol. 129, 1996, pp.364-382. https://doi.org/10.1006/jcph.1996.0256
  7. K. H. Kim, and O. H. Rho, "An Improvement of AUSM Schemes by Introducing the Pressure-based Weight Functions," Computers & Fluids, Vol. 27(3), 1998, pp.311-346. https://doi.org/10.1016/S0045-7930(97)00069-8
  8. K. H. Kim, and O. H. Rho, "An Improvement of AUSM Schemes by Introducing the Pressure-based Weight Functions," The fifth Annual Conference of the Computational Fluid Dynamics Society of Canada (CFD 97), 1997, Vol. 5, pp.(14-33)-(14-38).
  9. J. R. Edwards, "A Low-Diffusion Flux-Splitting Scheme for Navier-Stokes Calculations," AIAA Paper 95-1703-CP, 1995.
  10. H. C. Yee, G. H. Kolpfer, and J. L. Montague, "High-Resolution Shock Capturing Schemes for Inviscid and Viscous Hypersonic Flows," NASA TM 101088, 1989.
  11. D. Hanel, R. Schwane, and G. Seider, "On the Accuracy of Upwind Schemes for the Solution of the Navier-Stokes Equations," AIAA paper 87-1105-CP, 1987.
  12. A. Harten, "High Resolution Schemes for Hyperbolic Conservation Laws," J. of Computational Physics, Vol. 49, 1983, pp.357-393. https://doi.org/10.1016/0021-9991(83)90136-5
  13. P. K. Sweby, "High Resolution TVD Schemes Using Flux Limiters," Lectures in Applied Mathematics, Vol. 22, 1985, pp.289-309.
  14. P. L. Roe, "A Survey of Upwind Differencing Techniques," Lecture Notes in Physics, Vol. 323, 1989, p.69. https://doi.org/10.1007/3-540-51048-6_6
  15. C. Hirsh, Numerical Computation of Internal and External Flows, Vol. 1,2, (John Wiley & Sons, 1990.
  16. K. H. Kim, C. Kim, and O. Rho, "Accurate Computations of Hypersonic Flows Using AUSMPW+ Scheme and Shock-Aligned Grid Technique," AIAA Paper 98-2442, 1998.