DOI QR코드

DOI QR Code

Electrochemical Characterization of Nanosized Electrode Arrays Prepared from Nanoporous Self-Assembled Monolayers

  • Choi, Shin-Jung (Department of Chemistry and Center for Integrated Molecular Systems,Pohang University of Science and Technology) ;
  • Park, Su-Moon (Department of Chemistry and Center for Integrated Molecular Systems,Pohang University of Science and Technology)
  • Published : 2002.05.20

Abstract

We characterized nanoelectrode arrays prepared from self-assembled monolayers (SAMs) by adsorption from a solution containing thiolated $\beta$-cyclodextrin ($\beta$-CD) and n-alkanethiol on the gold electrode surface, using electrochemical methods. While the framework, the n-hexadecanethiol SAM, effectively blocked electron transfer between the electrode surface and solution-phase redox probe molecules, the $\beta$-CD cavities isolated in the forests of n-hexadecanethiol molecules were shown to act as an ultramicroelectrode array. The shapes of cyclic voltammograms of probe molecules were related to the number densities of $\beta$-CD molecules within the monolayer films. Probe molecules that have the correct combination of physical and chemical characteristics were shown to effectively penetrate the framework through the $\beta$-CD pores and exchange electrons with the electrode surface.

Keywords

References

  1. Wightman, R. M.; Wipf, D. O. 'Voltammery at Ultramicroelectrodes' in Electroanalytical Chemistry, Vol. 15; Bard, A. J., Ed.; Dekker: New York, 1989; pp 267-353
  2. Chailapakul, O.; Crooks, R. M. Langmuir 1993, 9, 884 https://doi.org/10.1021/la00028a002
  3. Chailapakul, O.; Crooks, R. M. Langmuir 1995, 11, 1329 https://doi.org/10.1021/la00004a046
  4. Lee, J.-Y.; Park, S.-M. J. Phys. Chem. B 1998, 102, 9940 https://doi.org/10.1021/jp9828235
  5. Lee, J.-Y.; Park, S.-M. J. Electrochem. Soc. 2000, 147, 4189 https://doi.org/10.1149/1.1394039
  6. Choi, S.-J.; Woo, D.-H.; Myung, N.; Kang, H.; Park, S.-M. J.Electrochem. Soc. 2001, 148, C569 https://doi.org/10.1149/1.1385848
  7. Woo, D.-H.; Choi, S.-J.;Han, D.-H.; Kang, H.; Park, S.-M. Phys. Chem. Chem. Phys.2001, 3, 3382 https://doi.org/10.1039/b100985k
  8. Choi, S.-J.; Park, S.-M. Adv. Mater. 2000, 12,1547 https://doi.org/10.1002/1521-4095(200010)12:20<1547::AID-ADMA1547>3.0.CO;2-1
  9. Park, S.-M.; Lee, J.-Y.; Choi, S.-J. Synth. Met. 2001,121, 1297. https://doi.org/10.1016/S0379-6779(00)01443-0
  10. Rojas, M. T.; Koniger, R.; Stoddart, J. F.; Kaifer, A. E. J. Am. Chem. Soc. 1995, 117, 336 https://doi.org/10.1021/ja00106a036
  11. Gadelle, A.; Defaye, J. Angew.Chem. Int. Ed. Engl. 1991, 30, 78. https://doi.org/10.1002/anie.199100781
  12. Nuzzo, R. G.; Dubois, L. H.; Allara, D. L. J. Am. Chem. Soc.1990, 112, 558 https://doi.org/10.1021/ja00158a012
  13. Dubois, L. H. Annu. Rev. Phys. Chem. 1992,43, 437. https://doi.org/10.1146/annurev.pc.43.100192.002253
  14. Hahner, G.; Woll, Ch.; Buck, M.; Grunze, M. Langmuir 1993, 9, 1955 https://doi.org/10.1021/la00032a005
  15. Chidsey, C. D. E.; Bertozzi, C. R.; Putvinski, T. M.; Mujsce, A. M. J. Am. Chem. Soc. 1990, 112, 4301 https://doi.org/10.1021/ja00167a028
  16. Collard, D. M.; Fox, M. A. Langmuir 1991, 7, 1192 https://doi.org/10.1021/la00054a029
  17. Amatore, C.; Saveant, J. M.; Tessier, D. J. Electroanal. Chem. 1983, 147, 39 https://doi.org/10.1016/S0022-0728(83)80055-2
  18. Li, S.; Purdy, W. C. Chem. Rev. 1992, 92, 1457 https://doi.org/10.1021/cr00014a009
  19. Bard, A. J.; Faulkner, L. R. Electrochemical Methods, 2nd Ed.; Wiley: New York, 2001, (a) p 168
  20. Bard, A. J.; Faulkner, L. R. Electrochemical Methods, 2nd Ed.; Wiley: New York, 2001, p 232.
  21. Inoue, Y.; Hakushi, T.; Liu, Y.; Tong, L.-H.; Shen, B.-J.; Jin, D.-S. J. Am. Chem. Soc. 1993, 115, 475 https://doi.org/10.1021/ja00055a017
  22. Hamasaki, K.; Ikeda, H.; Nakamura, A.; Ueno, A.; Toda, F.; Suzuki, I.; Osa, T. J. Am. Chem. Soc. 1993, 115, 5035 https://doi.org/10.1021/ja00065a012
  23. Breslow, R.; Zhang, B. J. Am. Chem. Soc. 1996, 118, 8495 https://doi.org/10.1021/ja961567b
  24. Isnin, R.; Salam, C.; Kaifer, A. E. J. Org. Chem. 1991, 56, 35 https://doi.org/10.1021/jo00001a009
  25. Godinez, L. A.; Lin, J.; Munoz, M.; Coleman, A. W.; Kaifer, A. E. J. Chem. Soc., Faraday Trans. 1996, 92, 645 https://doi.org/10.1039/ft9969200645
  26. Wenz, G. Angew. Chem. Int. Ed. Engl. 1994, 33, 803 https://doi.org/10.1002/anie.199408031

Cited by

  1. Analytical applications of gold electrodes modified with monolayers of thiolated cyclodextrins vol.57, pp.1-4, 2007, https://doi.org/10.1007/s10847-006-9255-2
  2. Individually addressable recessed gold microelectrode arrays with monolayers of thio-cyclodextrin nanocavities vol.130, pp.10, 2002, https://doi.org/10.1039/b506367a
  3. Impedimetric sensing of uranyl ion based on phosphate functionalized cysteamine self-assembled monolayers vol.562, pp.2, 2002, https://doi.org/10.1016/j.aca.2006.01.046
  4. Electrochemical characterization of BSA/11-mercaptoundecanoic acid on Au electrode vol.169, pp.1, 2002, https://doi.org/10.1016/j.mseb.2009.11.021