DOI QR코드

DOI QR Code

High Magnetoelectric Properties in 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 Single Crystal and Terfenol-D Laminate Composites

  • Ryu, Jung-Ho (International Center for Actuators and Transducers, Materials Research Institute, The Pennsylvania State University) ;
  • Priya, Shashank (International Center for Actuators and Transducers, Materials Research Institute, The Pennsylvania State University) ;
  • Uchino, Kenji (International Center for Actuators and Transducers, Materials Research Institute, The Pennsylvania State University) ;
  • Kim, Hyoun-Ee (School of Materials Science and Engineering, Seoul National University) ;
  • Viehland, Dwight (Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University)
  • Published : 2002.01.01

Abstract

Magnetoelectric(ME) laminate composites of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3 (PMN-PT)$ and Terfenol-D were prepared by sandwiching single crystals of PMN-PT between Terfenol-D disks. The magnetoelectric voltage coefficient (dE/dH) of the composite was determined to be 10.30 V/cm${\cdot}$Oe, at 1 kHz and under a dc magnetic bias of 0.4 T. The value of dE/dH is ∼80 times higher than either that of naturally occurring magnetoelectrics or artificially-grown magnetoelectric composites. This superior magnetoelectric voltage coefficient is attributed to the high piezoelectric voltage constant as well as the high elastic compliance of PMN-PT single crystal and the large magnetostrictive response of Terfenol-D.

Keywords

References

  1. T. H. ODell, 'Magnetoelectrics- A New Class of Materials,' EIectronics and Power, 11 266-68 (1965)
  2. V. Suchetelen, 'Product Properties: A New Application of Composite Materials,' Philips Research Report, 27 28-37 (1972)
  3. K. Uchino, Comprehensive Composite Materials: Piezoelectrie Composites; Vol. 5, chap. 5.24, PP. 523, Elsevier, Amsterdam, The Netherlands, 2000
  4. J. van den Boomgaard and R. A. J. Born, 'A Sintered Magnetoelectric Composite Material Ba$TiO_3$-Ni(Co,Mn)$Fe_3O_4$,' J. Mater. Sci., 13 1538-48 (1978) https://doi.org/10.1007/BF00553210
  5. J. van den Boomgaard, A. M. J. G. Van Run and J. Van Suchtelen, 'Magnetoelectricity in Piezoelectiic-magnetostrictive Composites,' Ferroelectrics, 10 295-98 (1976) https://doi.org/10.1080/00150197608241997
  6. J. van den Boomgaard, D. R. Terrell, R. A. J. Bom and H F. J. I. Giller, 'An in situ Grown eutectic Magnetoelectric Composite Material: Part I Composition and Unidirectional Solidification,' J. Mater, Sci., 9 1705-09 (1974) https://doi.org/10.1007/BF00540770
  7. A. M. J. G. Van Run, D. R. Terrell and J. H. Scholing, 'Anin situ Grown eutectic Magnetoelectric Composite Material: Part II Physical Properties,' J. Mater. Sci., 9 1710-14 (1974) https://doi.org/10.1007/BF00540771
  8. L. P. M. Bracke and R. G. van Vliet, 'A Broadband Magnetoelectric Transducer Using a Composite Material,' Int. J. Etectronics, 51 [3] 255-62 (1981)
  9. T. G. Lupeiko, S. S. Lopatin, I. V. Lisnevskaya and B. I. Zvyagintsev, 'Magnetoelectric Composite Materials Based on Lead Zirconate Titanate and Nickel Ferrite,' Inorg. Mater., 30 1353-56 (1994)
  10. T. G. Lupeiko, I. V. Lisnevskaya, M. D. Chkheidze and B. I. Zvyagintsev, 'Laminated Magnetoelectric Composites Based on Nickel Ferrite and PZT Materials,' Inorg. Mater., 31 [9] 1139-42 (1995)
  11. T. G. Lupeiko, I. B. Lopatina, S. S. Lopatin and I. P. Getman, 'Porous Magnetoelectric Ceramic Based on Lead Zirconate Titanate and Nickel Ferrite,' Inorg. Mater., 27 [11]2394-96 (1991)
  12. T. G. Lupeiko, I. B. Lopatina, I. V. Kozyrev and L. A. Derbaremdiker, 'Electrophysical and Magnetoelectric Properties of Ceramic Materials of the Type Piezoelectric-ferrite,' Inorg. Mater., 28 [3] 632-36 (1991)
  13. Y. I. Bokhan and V. M. Laletin, 'Influence of Demagnetizing Factors on the Field Dependence of Magnetoelectnc Effect in Ferrite-piezoelectric Composite Ceramics,' Inorg.Mater., 32 [5] 634-35 (1996)
  14. K. K. Patankar, V. L. Mathe, A. N. Patil, S. A. Patil, S. D. Lotke, Y. D. Kolekar and P. B. Joshi, 'Electrical Conduction and Magnetoelectric Effect in $CuFe_{1.8}Cr_{0.2}O_{4}-Ba_{0.8}Pb_{0.2}$ $TiO_3$ Composites,' J. Electroceramics, 6 [2] 115-22 (2001) https://doi.org/10.1023/A:1011452616738
  15. G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan and V. M. Laletin, 'Magnetoelectric Bilayer and Multilayer Structures of Magnetosthctive and PiezoElecthc Oxides,' Phys. Rev. B, 64 214-408 (2001)
  16. J. Ryu, A. Vazquez Carazo, K. Uchino and H-E. Kim, 'Piezoelectric and Magnetoelectric Properties of Lead Zirconate Tatanate/Ni-Ferrite Particulate Composites,' J. EIectroceramics, 7 17-24 (2001) https://doi.org/10.1023/A:1012210609895
  17. J. Ryu, A. Vazquez Carazo, K. Uchino and H-E Kim, 'Magnetoelectric Properties in Piezoelectric and Magnetosthctive Laminar Composites,' Jpn. J. Appl. Phys., 40 [8] 4948-51 (2001) https://doi.org/10.1143/JJAP.40.4948
  18. J. Ryu, S. Priya, A. Vazquez Carazo, K. Uchino and H-E Kim, 'Effect of the Magnetostrictive Layer on Magnetoelectric Properties in Pb(Zr,Ti)$O_3$/Terfenol-D Laminate Composites,' J. Am. Ceram. Soc., 84 [12] 2905-08 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb01113.x
  19. L. E. Cross, 'Relaxor Ferroelectrics,' Ferroetectrics, 76 241-67 (1987) https://doi.org/10.1080/00150198708016945
  20. G. A. Smolensky, 'Physical Phenomena in Ferroelectrics with Diffused Phase Transition,' J. Phys. Soc. Jpn. (SuppL), 28 26-37 (1970)
  21. S-E. Park and T. R. Shrout, 'Ultrahigh Strain and Piezoelectric Properties in Relaxor-based Ferroelectric Single Crystals,' J. Appl. Phys., 82 [4] 180-411 (1997)
  22. J. Kuwata, K. Uchino and S. Nomura, 'Phase Transition in the Pb($Zn_{1/3}Nb_{2/3}$)$O_3$-$PbTiO_3$ System,' Ferroelectrics, 37 579-82 (1981) https://doi.org/10.1080/00150198108223490
  23. J. Kuwata, K. Uchino and S. Nomura, 'Dielectric and Piezoelectric Properties of 0.91 Pb($Zn_{1/3}Nb_{2/3}$)$O_3$-O.OaPb$TiO_3$ Single Ciystals,' Jpn. J. Appl. Phys., 21 1298-302 (1982) https://doi.org/10.1143/JJAP.21.1298
  24. S. L. Swartz, T. R. Shrout, W. A. Schulze and L. E. Cross, 'Dielectric Properties of Lead Magnesium Niobate Ceramics' J. Am. Ceram. Soc., 67 311-15 (1984) https://doi.org/10.1111/j.1151-2916.1984.tb19528.x
  25. S. L. Swartz and T. R. Shrout, 'Fabrication of Perovskite Lead Magnesium Niobate,' Mater. Res. BulI., 17, 124-550 (1982)
  26. P. Papet, J. P. Dougherty and T. R. Shrout, 'Particle and Grain Size Effects on the Dielectric Behaviour of the Relaxor Ferroelectric Pb($Mg_{1/3}Nb_{2/3}$)$O_3$,' J. Mater.Res., 52902-09 (1990)
  27. D. Viehland, 'Symmetry-adaptive Ferroelectric Mesostates in Oriented Pb($B_{I1/3}B_{II2/3}$)$O_3$$PbTiO_3$ Crystals,' J. Appl. Phys., 88 4794-806 (2000) https://doi.org/10.1063/1.1289789
  28. S. Priya, J. Ryu, K. Uchino and D. Viehland, 'Investigation of the Ferroelectric Orthorhombic phase in the Pb($Zn_{1/3}Nb_{2/3}$)$O_3$-$PbTiO_3$ System,' Ferroelectrics, in print
  29. G. Engdahl, Handbook of Giant Magnetostrictive Materials; pp. 127-135, Academic Press, San Diego, CA, 2000
  30. A. V. Virkar, J. L. Huang and R. A. Cutler, 'Strengthening of Oxide Ceramics by Transformation-Induced Stress,' J. Am. Ceram. Soc., 70 [3] 164-70 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb04952.x

Cited by

  1. Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: theory vol.50, pp.10, 2003, https://doi.org/10.1109/TUFFC.2003.1244741
  2. Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/ piezoelectric laminate composite: experiments vol.51, pp.7, 2004, https://doi.org/10.1109/TUFFC.2004.1320738
  3. Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient vol.87, pp.6, 2005, https://doi.org/10.1063/1.2007868
  4. PARTICULATE COMPOSITES—ELECTRICAL AND MAGNETIC PROPERTIES vol.82, pp.1, 2006, https://doi.org/10.1080/10584580600872976
  5. Applications vol.8, pp.1, 2008, https://doi.org/10.1109/JSEN.2007.912899
  6. Magnetoelectric Interactions in Lead-Based and Lead-Free Composites vol.4, pp.12, 2011, https://doi.org/10.3390/ma4040651
  7. First-Order Studies of Nanometric Biferroic vol.02, pp.02, 2012, https://doi.org/10.4236/wjcmp.2012.22012
  8. Current Status of Magnetoelectric Composite Thin/Thick Films vol.2012, pp.1687-8124, 2012, https://doi.org/10.1155/2012/824643
  9. Progress in Dual (Piezoelectric-Magnetostrictive) Phase Magnetoelectric Sintered Composites vol.2012, pp.1687-8124, 2012, https://doi.org/10.1155/2012/320612
  10. Piezoelectric Energy Harvesting Systems-Essentials to Successful Developments vol.6, pp.5, 2018, https://doi.org/10.1002/ente.201700785
  11. Magnetoelectric effect in metal-PZT laminates vol.28, pp.5, 2005, https://doi.org/10.1007/BF02711230
  12. Synthesis of High Magnetoelectric Coefficient Composites Using Annealing and Aging Route vol.3, pp.5, 2006, https://doi.org/10.1111/j.1744-7402.2006.02099.x
  13. Recent advancements in magnetoelectric particulate and laminate composites vol.19, pp.1, 2007, https://doi.org/10.1007/s10832-007-9042-5
  14. Effect of gradient composite structure in cofired bilayer composites of Pb(Zr0.56Ti0.44)O3–Ni0.6Zn0.2Cu0.2Fe2O4 system on magnetoelectric coefficient vol.43, pp.18, 2008, https://doi.org/10.1007/s10853-008-2912-7
  15. Large magnetoelectric coefficient in Co-fired Pb (Zr0.52Ti0.48)O3–Pb (Zn1/3Nb2/3)O3–Ni0.6Cu0.2Zn0.2Fe2O4 trilayer magnetoelectric composites vol.43, pp.6, 2008, https://doi.org/10.1007/s10853-007-2442-8
  16. Doping effect on magnetoelectric coefficient of Pb(Zr052Ti0.48)O3–Ni(1−x)Zn x Fe2O4 particulate composite vol.43, pp.4, 2008, https://doi.org/10.1007/s10853-007-2386-z
  17. Synthesis and characterization of CoFe2O4–Ba0.9Sr0.1TiO3 magnetoelectric composites with dielectric and magnetic properties vol.97, pp.3, 2009, https://doi.org/10.1007/s00339-009-5254-7