Analysis of Transient Scattering from Arbitrarily Shaped Three-Dimensional Conducting Objects Using Combined Field Integral Equation

결합 적분방정식을 이용한 삼차원 임의형태 도체 구조물의 전자파 지연산란 해석

  • 정백호 (湖西大 電氣情報通信工學部)
  • Published : 2002.11.01

Abstract

A time-domain combined field integral equation (CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time-domain electric field integral equation (EFIE) with the magnetic field integral equation (MFIE). The time derivative of the magnetic vector potential in EFIE is approximated using a central finite difference approximation and the scalar potential is averaged over time. The time-domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. The incident spectrum of the field may contain frequency components, which correspond to the internal resonance of the structure. For the numerical solution, we consider both the explicit and implicit scheme and use two different kinds of Gaussian pulses, which may contain frequencies corresponding to the internal resonance. Numerical results for the EFIE, MFIE, and CFIE are presented and compared with those obtained from the inverse discrete Fourier transform (IDFT) of the frequency-domain CFIE solution.

Keywords

References

  1. S. M. Rao, E. Arvas, and T. K. Sarkar, 'Combined field solution for TM scattering from multiple conducting and dielectric cylinders of arbitrary cross section,' IEEE Trans. Antennas Propagat., vol. 35, pp. 447-451, April 1987 https://doi.org/10.1109/TAP.1987.1144124
  2. P. M. Goggans and T. H. Shumpert, 'CFIE MM solution for TE and TM incidence on a 2-D conducting body with dielectric filled cavity,' IEEE Trans. Antennas Propagat., vol. 38, pp. 1645-1649, Oct. 1990 https://doi.org/10.1109/8.59779
  3. L. M. Correia, 'A comparison of integral equations with unique solution in the resonance region for scattering by conducting bodies,' IEEE Trans. Antennas Propagat., vol. 41, pp. 52-58, Jan. 1993 https://doi.org/10.1109/8.210115
  4. D. A. Vechinski and S. M. Rao, 'Transient scattering by dielectric cylinders: E-field, H-field, and combined field solutions,' Radio Sci., vol. 27, pp. 611-622, Sept. Oct. 1992
  5. B. Shankar, A. A. Ergin, K. Aygun, and E. Michielssen, 'Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation,' IEEE Trans. Antennas Propagat., vol. 48, pp. 1064-1074, July 2000. https://doi.org/10.1109/8.876325
  6. S. M. Rao, Time Domain Electromagnetics. Academic Press, 1999
  7. S. M. Rao and D. R. Wilton, 'Transient scattering by conducting surfaces of arbitrary Shape,' IEEE Trans. Antennas Propagat., vol. 39, pp. 56-61, Jan. 1991. https://doi.org/10.1109/8.64435
  8. D. A. Vechinski and S. M. Rao, 'A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape,' IEEE Trans. Antennas Propagat., vol. 40, pp. 661-665, June 1992. https://doi.org/10.1109/8.144600
  9. S. M. Rao and T. K. Sarkar, 'An alternative version of the time-domain electric field integral equation for arbitrarily shaped conductors,' IEEE Trans. Antennas Propagat., vol. 41, pp. 831-834, June 1993. https://doi.org/10.1109/8.250460
  10. P. J. Davies, 'On the stability of time-marching schemes for the general surface electric-field integral equation,' IEEE Trans. Antennas Propagat., vol. 44, pp. 1467-1473, Nov. 1996 https://doi.org/10.1109/8.542071
  11. S. M. Rao and T. K. Sarkar, 'Time-domain modeling of two-dimensional conducting cylinders utilizing an implicit scheme-TM incidence,' Microwave Opt. Technol. Lett., vol. 15, pp. 342-347, Aug. 1997. https://doi.org/10.1002/(SICI)1098-2760(19970820)15:6<342::AID-MOP2>3.0.CO;2-E
  12. S. M. Rao and T. K. Sarkar, 'An efficient method to evaluate the time-domain scattering from arbitrarily shaped conducting bodies,' Microwave Opt. Technol. Lett., vol. 17, pp. 321-325, April 1998 https://doi.org/10.1002/(SICI)1098-2760(19980405)17:5<321::AID-MOP14>3.0.CO;2-6
  13. S. M. Rao and T. K. Sarkar, 'Transient analysis of electromagnetic scattering from wire structures utilizing an implicit time-domain integral-equation technique,' Microwave Opt. Technol. Lett., vol. 17, pp. 66-69, Jan. 1998 https://doi.org/10.1002/(SICI)1098-2760(199801)17:1<66::AID-MOP18>3.0.CO;2-9
  14. S. M. Rao, D. A. Vechinski, and T. K. Sarkar, 'Transient scattering by conducting cylinders-implicit solution for the transverse electric case,' Microwave Opt. Technol. Lett., vol. 21, pp. 129-134. April 1999 https://doi.org/10.1002/(SICI)1098-2760(19990420)21:2<129::AID-MOP13>3.0.CO;2-5
  15. T. K. Sarkar, W. Lee, and S. M. Rao, 'Analysis of transient scattering from composite arbitrarily shaped complex structures,' IEEE Trans. Antennas Propagat., vol. 48, pp. 1625-1634, Oct. 2000 https://doi.org/10.1109/8.899679
  16. B. H. Jung and T. K. Sarkar, 'Time-domain electric field integral equation with central finite difference,' Microwave Opt. Technol. Lett., vol. 31, no. 6, pp. 429-435, Dec. 2001 https://doi.org/10.1002/mop.10055
  17. S. M. Rao, D. R. Wilton, and A. W. Glisson, 'Electromagnetic scattering by surfaces of arbitrary shape,' IEEE Trans. Antennas Propagat., vol. 30, pp. 409-418, May 1982 https://doi.org/10.1109/TAP.1982.1142818
  18. D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, And C. M. Butler, 'Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,' IEEE Trans. Antennas Propagat., vol. 32, pp. 276-281, March 1984 https://doi.org/10.1109/TAP.1984.1143304
  19. S. M. Rao, Electromagnetic Scattering and Radiation of Arbitrarily-Shaped Surfaces by Triangular Patch Modeling. PhD Dissertation, Univ. Mississippi, Aug. 1980
  20. B. H. Jung and T. K. Sarkar, 'Transient scattering from three-dimensional conducting bodies by using magnetic field integral equation,' J. of Electromag. Waves and Appl., vol. 16, no. 1, pp. 111-128, Jan. 2002 https://doi.org/10.1163/156939302X01371
  21. A. J. Poggio and E. K. Miller, 'Integral equation solutions of three dimensional scattering problems,' in Computer Techniques for Electromagnetics. New York: Pergamon Press, 1973