Filler-Elastomer Interactions. 6. Influence of Oxygen Plasma Treatment on Surface Properties of Carbon Blacks

충전재-탄성체 상호작용. 6. 산소 플라즈마 처리가 카본블랙표면특성 미치는 영향

  • Cho, Ki-Sook (Advanced Materials Division, Korea Research Institute of Chmical Technology) ;
  • Zoborski, M. (Institute of Polymers, Technical University of Lodz) ;
  • Slusarski, L. (Institute of Polymers, Technical University of Lodz) ;
  • Park, Soo-Jin (Advanced Materials Division, Korea Research Institute of Chmical Technology)
  • 조기숙 (한국화학연구원 화학소재 연구부) ;
  • ;
  • ;
  • 박수진 (한국화학연구원 화학소재 연구부)
  • Published : 2002.06.30

Abstract

In this work, the surface properties and mechanical interfacial properties of the carbon blacks treated by oxygen plasma were investigated. The surface properties of carbon black by oxidation process of oxygen plasma were studied in acid-base surface value, zeta potential, and X-ray photoelectron spectroscopy (XPS). And their mechanical interfacial properties of the carbon black/rubber composites were evaluated by the composite tearing energy ($G_{III}c$). As a result, it was found that the introduction rate of oxygen-containing polar functional groups, such as carboxyl, hydroxyl, lactone, and carbonyl groups, onto the carbon black surfaces was increased by increasing the plasma treatment time. It revealed that the polar rubber, such as acrylonitrile butadiene rubber (NBR), showed relatively a high degree of interaction with oxygen-containing functional groups of the carbon black surfaces, resulting in improving the tearing energy ($G_{III}c$) of the carbon black/acrlyonitrile butadiene rubber composites.

본 연구에서는 산소 플라즈마 처리에 의한 카본블랙의 표면특성과 카본블랙/고무 복합재료의 기계적 계면물성에 대하여 고찰하였다. 산소플라즈마의 산화반응에 의한 카본블랙 표면특성은 표면산도-염기도와 제타전위, 그리고 X-ray photo-electron spectroscopy (XPS)를 통하여 알아보았으며 카본블랙/고무 복합재료의 기계적 물성은 인열에너지 ($G_{III}c$)를 측정하여 관찰하였다. 본 실험결과로부터 플라즈마 처리에 의해 카본블랙 표면에 카르복시기, 하이드록시기, 락톤, 카르보닐기와 같은 산소를 함유하는 극성관능기들이 플라즈마 처리시간이 증가함에 따라 증가하는 경향을 나타내었으며, 카본블랙 표면에 산소를 함유한 관능기와 극성고무인 NBR과 높은 상호작용으로 인해 카본블랙과 고무사이의 계면 결합력이 증가하여 카본블랙/고무 복합재료의 기계적 계면물성인 tearing energy가 증가한 것을 확인할 수 있었다.

Keywords

References

  1. S. Bandyopadhyay, P. P. De, D. K. Tripathy, and S. K. De, Polymer, 37, 353 (1996)
  2. S. J. Park and J. S. Kim, J. Colloid Interface Sci., 232, 311 (2000)
  3. J. H. Lin, H. W. Chen, K. T. Wang, and F. H. Liaw, J. Mater. Chem., 8, 2169 (1998)
  4. J. B. Donnet, W. D. Wang, and A. Vidal, Carbon, 32, 199 (1994)
  5. A. Grill, 'Cold Plasma in Materials Fabrication: From Fundamentals to Applications', IEEE; ISBN: 0708347145, (1994)
  6. B. Champman, 'Glow Discharge Processes', John Wiley & Sons, New York, (1980)
  7. C. A. Frysz and D. D. L. Chung, Carbon, 35, 1111 (1997)
  8. S. J. Park and J. S. Kim, J. Colloid Interface Sci., 244, 336 (2001)
  9. X. Li, and K. Horita, Carbon, 38, 133 (2000)
  10. M. Nakahara, K. Ozawa, and Y. Sanada, J. Mater. Sci., 29, 1646 (1994)
  11. L. E. Cascarini De Torre, E. J. Bottani, A. Martinez-Alonso, A. Cuesta, A. B. Garcia, and J. M. D. Tascon, Carbon, 36, 277 (1998)
  12. T. Takada, M. Nakahara, H. Kumagai, and Y. Sanada, Carbon, 34, 1087 (1996)
  13. J.M. Pena, N. S. Allen, M. Edge, C. M. Liauw, S. R. Hoon, B. Valange, and R. I. Cherry, Polym. Degrad. Stab., 71, 153 (2000)
  14. M. E. Semaan, L. Nikiel, and C. A. Quarles, Carbon, 39, 1379 (2001)
  15. H. P. Boehm, Adv. Catal., 16, 179 (1966)
  16. A. A. Griffith, Phil. Trans. R. Soc. London, A. 221, 163 (1920)
  17. B. R. Ware and W. H Flygare, J. Colloid Interface Sci., 39, 670 (1972)
  18. M. A. Lopes, F. J. Monteiro, J. D. Santos, A. P. Serro, and B. Saramago, J. Biomed. Mater. Res., 45, 370 (1999)
  19. S. J. Park and J. S. Kim, Carbon.; 39, 2011 (2001)
  20. S. J. Park and J. S. Kim, J. Colloid Interface Sci., 232, 311 (2000)
  21. C. R. G. Furtado, J. L. Lebalnce, and R C. R. Nunes, Eur. Polym. J., 36, 1717, (2000)