DOI QR코드

DOI QR Code

A Study on a large-scale materials simulation using a PC networked cluster

PC Network Cluster를 사용한 대규모 재료 시뮬레이션에 관한 연구

  • 최덕기 (단국대학교 기계공학과) ;
  • 류한규 (단국대학교 기계공학과 대학원)
  • Published : 2002.08.01

Abstract

For molecular dynamics requires high-performance computers or supercomputers to handle huge amount of computation, it is not until recent days that the application of molecular dynamics to materials fracture simulations draw some attention from many researchers. With the recent advent of high-performance computers, computation intensive methods become more tractable than ever. However, carrying out materials simulation on high-performance computers costs too much in general. In this study, a PC cluster consisting of multiple commodity PCs is established and computer simulations of materials with cracks are carried out on it via molecular dynamics technique. The effect of the number of nodes, speedup factors, and communication time between nodes are measured to verify the performance of the PC cluster. Upon using the PC cluster, materials fracture simulations with more than 50,000 molecules are carried out successfully.

분자 동역학 기법을 사용한 재료 파괴 시뮬레이션은 계산량의 방대함으로 인하여 극히 최근까지 활발한 연구가 진행되지 못하였으나 최근 컴퓨터의 성능향상으로 인하여 새로운 연구분야로 떠오르고 있다. 분자 동역학은 그 특성상 계산 집약적인 환경을 요구함으로 대규모의 연산을 위해서는 슈퍼컴퓨터나 클러스터(cluster)의 사용이 필수적이나 고가의 장비와 사용료로 인하여 많은 제한을 받아왔다. 본 연구에서는 PC를 사용하여 클러스터를 제작하고, 균열이 있는 시편을 사용하여 파괴현상에 대한 분자 수준의 거동을 시뮬레이션 하였으며, 클러스터의 노드(node) 수, 효율, 분자 수, 노드간의 통신시간 등의 상호관계를 파악하여 최적의 성능을 가진 클러스터를 구성하는 데 필요한 요소들을 분석하였다. 제작된 PC 클러스터를 사용하여 약 50,000개의 분자를 사용한 재료 파괴 시뮬레이션을 수행하였다.

Keywords

References

  1. Rapaport, D. C, The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, UK, 1995.
  2. Daw, M. S. and Baskes, M. I., "Embedded-Atom Method : Derivation and Application to Impurities, Surfaces, and Other Defects in Metals", Physical Review B, Vol. 29, No. 12, pp. 6443-6453, 1984. https://doi.org/10.1103/PhysRevB.29.6443
  3. Jacobsen, K. W. et al., "Interatomic Interactions in the Effective-Medium Theory", Physical Review B, Vol. 35, No. 14, pp. 7423-7442, 1987. https://doi.org/10.1103/PhysRevB.35.7423
  4. Holian, B. L. et al., "Effects of Pairwise versus Many-Body Forces on High-Stress Plastic Deformation", Physical Review A, Vol. 43, No. 6, pp. 2655-2661, 1991. https://doi.org/10.1103/PhysRevA.43.2655
  5. Manninen, M., Nieminen, R. M. and Puska, M. J., "Introduction to Many-Atom Interactions in Solids" (eds., Manninen, M., Nieminen, R. M. and Puska, M. J.), Springer-Verlag, Pajulahti, Finland, pp. 2-11, 1990.
  6. Sutton, A. P. and Chen, J., "Long-Range Finnis-Sinchair Potentials", Philosophical magazine Letters, Vol. 61, pp. 139-146, 1990. https://doi.org/10.1080/09500839008206493
  7. Ashurst, W. T., Hoover, W. G., "Microscopic Fracture Studies in the Two-Dimensional Triangular Lattice", Physical Review B, Vol. 14, No. 4, pp. 1465-1473, 1976. https://doi.org/10.1103/PhysRevB.14.1465
  8. DeCelis, B., Argon, A. S. and Yip, S., "Molecular Dynamics Simulations of Crack Tip Processes in Alpha-Iron and Copper", Journal of Applied Physics, Vol. 54, No. 9, pp. 4864-4878, 1983. https://doi.org/10.1063/1.332796
  9. Halicioglu, T and Cooper, D. M., "An Atomistic Model of Slip Formation", Materials Science and Engineering, Vol. 62, pp. 121-128, 1984. https://doi.org/10.1016/0025-5416(84)90273-8
  10. Green, D., "Quasi Molecular, Particle Modelling of Crack Generation and Fracture", Computer and Structures, Vol. 22, pp. 1055-1061, 1986. https://doi.org/10.1016/0045-7949(86)90165-3
  11. Dienes, G. J. and Paskin, A., "Molecular Dynamics Simulations of Crack Propagation", J. Phys. Chem. Solids, Vol. 48, pp. 1015-1033, 1987. https://doi.org/10.1016/0022-3697(87)90117-X
  12. Shiang, K. et al., "A Molecular Dynamics Study of Self-Diffusion on Metal Surfaces", Surface Science, Vol. 301, pp. 136-150, 1994. https://doi.org/10.1016/0039-6028(94)91295-5
  13. Maekawa, K. and Itoh, A., "Friction and Tool Wear in Nano-Scale Machining - A Molecular Dynamics Approach", Wear, Vol. 188, pp. 115-122, 1995. https://doi.org/10.1016/0043-1648(95)06633-0
  14. Scagnetti, P. A. et al., "Stress and Strain Analysis in Molecular Dynamics Simulation of Solids", Transaction of the ASME, Vol. 63, pp. 450-452, 1996. https://doi.org/10.1115/1.2788888
  15. Furuya, Y., Noguchi, H. and Schmauder, S., "Molecular Dynamics Study on Low Temperature Brittleness in Tungsten Single Crystals", International Journal of fracture, Vol. 107, pp. 139-158, 2001. https://doi.org/10.1023/A:1007695029280
  16. Hoover, Wm. G., Posch, H. A., Castillo, V. M. and Hoover, C. G., "Computer Simulation of Irreversible Expansions via Molecular Dynamics, Smooth Particle Applied Mechanics, Eulerian, and Lagrangian Continuum Mechanics", Journal of Statistical Physics, Vol. 100, No. 1, pp. 313-326, 1994.
  17. Abraham, F. F., Brodbeck, D., Rafey, R. A., Rudge, W. E., "Instability Dynamics of Fracture : A Computer Simulation Investigation", Physical Review Letters, Vol. 73, No. 2, pp. 272-275, 1994. https://doi.org/10.1103/PhysRevLett.73.272
  18. Plimpton, S. and Hendrickson, B., "A New Parallel Method for Molecular dynamics Simulation of Macromolecular Systems", Sandia Technical Report SAND94-1862, 1994.
  19. Hoover, W. G. et al., "Large-Scale Elastic-Plastic Indentation Simulations via Non-Equilibrium Molecular Dynamics", Physical Review A, Vol. 42, No. 10, pp. 5844-5853, 1990. https://doi.org/10.1103/PhysRevA.42.5844
  20. Wagner, N., Holian, B. L. and Voter, A. F., "Molecular Dynamics Simulations of Two-Dimensional Materials at High Strain Rates", Physical Review A, Vol. 45, No. 12, pp. 8457-8470, 1992 https://doi.org/10.1103/PhysRevA.45.8457
  21. Holian, B. L. and Ravelo, R., "Fracture Simulation using Large-Scale Molecular Dynamics", Physical Review B, Vol. 51, No. 17, pp. 11275-11288, 1995. https://doi.org/10.1103/PhysRevB.51.11275
  22. Zhou, S. J. et al., "Large-Scale Molecular Dynamics Simulation of Three-Dimensional Ductile Failure", Physical Review Letters, Vol. 78, No. 3, pp. 479-482, 1997. https://doi.org/10.1103/PhysRevLett.78.479
  23. Abranam, F. F., "Portrait of a Crack: Rapid Fracture Mechanics using Parallel Molecular Dynamics", IEEE Computational Science and Engineering, April-June, pp. 66, 1997.
  24. Choi, D. K. and Kim, J. W., "Calculation of Stress Intensity Factors using Three-Dimensional Molecular Dynamics Simulation", Metals and Materials, Vol. 4, No. 4, pp. 920-924, 1998. https://doi.org/10.1007/BF03026424
  25. Choi, D. K. and Kim, J. W., "A Study on Distribution of Plastic Region near a Crack Tip using Three-Dimensional Molecular Dynamics Simulation", Metals and Materials, Vol. 4, No. 4, pp. 925-930, 1998. https://doi.org/10.1007/BF03026425
  26. Becker, D., The Beowulf Project, http://www.beowulf.org, 1994.
  27. 김승조, 이창성, 손정우, 하병언, 조진연, "인터넷 수퍼컴퓨팅 기술의 구현," 한국항공우주학회지, Vol.29, No. 3, pp. 28-37, 2001
  28. Netperf, http://www.netperf.org/netperf.
  29. MPI Primer/Developing with LAM, Ohio Supercomputing Center, The Ohio State University, http://www.osc,edu/lam.html, 1996.
  30. Pacheco, P. S., A User's Guide to MPI, http://citeseer.nj.nec.com, 1998.
  31. Argonne National Laboratory, MPICH: A Portable Implementation of MPI, http://www.openchannelfoundation.org, 2001.