Effect of NaCl Stress on the Growth, Photosynthetic Rate and Mineral Uptake of Tomato, Red Pepper and Egg Plant in Pot Culture

NaCl 스트레스가 토마토, 고추, 가지의 생육, 광합성 속도 및 무기양분 흡수에 미치는 영향

  • 강경희 (영남농업시험장 부산원예시험장) ;
  • 권기범 (영남농업시험장 부산원예시험장) ;
  • 최영하 (영남농업시험장 부산원예시험장) ;
  • 김회태 (영남농업시험장 부산원예시험장) ;
  • 이한철 (영남농업시험장 부산원예시험장)
  • Published : 2002.09.01

Abstract

This study was conducted to investigate the effece of NaCl concentrations on the growth, photosynthetic rate and mineral uptake of tomato, red pepper, and egg Plant in Pot culture. The growth such as plant height, plant fresh and dry weight, root fresh and dry weight and dried matter rate was decreased as NaCl concentrations were increased. Specially, the growth inhibition of tomato and egg plant was shown at over 40 mM NaCl, and that of red pepper at 20 mM NaCl. Yield of tomato and egg Plant was reduced at over 20 U NaCl, that of red pepper at over 10 mM NaCl. Yield reduction was affected by the number of fruit at low concentration and by mean weight and number of fruit at high concentration. Photosynthetic rate, water potential and stomatal conductance were decreased as NaCl concentrations were increased. The higher the concentration of NaCl, the lower the mineral uptake such as T-N, P, K, Ca and Mg, however, the higher the content of Na and Cl.

본 실험은 가지과 작물의 염 스트레스에 대한 생장 특성 및 생리적 반응을 구명하기 위하여 수행되었다. 생육단계에 따라 NaCl을 농도별로 처리한 결과는 다음과 같았다. 초장, 생체중 등 생육은 유묘기 및 영양 생장기 모두 NaCl 농도가 높을수록 모든 작물에서 억제되었다 특히 토마토 및 가지에서는 NaCl 40mM 이상에서, 그리고 고추에서는 20mM 이상에서 작물의 생육이 크게 억제되었다. 수량은 토마토 및 가지에 서는 NaCl 20 mM 이상에서, 그리고 고추에서는 10 mM 이상에서 감소하였다. 이러한 수량감소는 낮은 농도에서는 착과수의 감소에, 그리고 농도가 높을수록 착과수의 감소와 더불어 평균과중의 감소의 영향이 컸다. 광합성 속도는 NaCl 농도가 높을수록 감소하는 경향이었으며. 고추가 가장 낮았고, 토마토, 가지 순으로 낮았다. 잎의 수분포텐셜과 기공 전도도도 광합성과 같은 경향을 나타냈다. 경엽의 무기 양분 함량에서는 질소, 인산, 칼슘, 마그네슘 및 칼륨 함량은 NaCl 농도가 증가할수록 감소하였으나 Na 및 Cl 함량은 증가하였다.

Keywords

References

  1. Bemstein, L. 1959. Salt tolerance of vegetable crops in the west. USDA Info. Bull. p. 205
  2. Boyer, J. S. 1970. Leaf enlargement and metabolic rates in corn, soybean and sunflower at various leaf water potentials. Plant Physiol. 46:233-235 https://doi.org/10.1104/pp.46.2.233
  3. Bresler, E., B. L. McNeal, and D. L. Carter. 1982. Saline and sodic soils, Principle-dynamics modeling, Springer-Verlag, Berlin
  4. Cuartero, J. and F. M. Rafael. 1999. Tomato and salin ity. Sci. Hort. 78:83-125
  5. Feigin, A., I. Rylski, A. Meiri, and J. Shalhevet. 1987. Response of melon and tomato plants to chloride-nitrate ratios in saline nutrient solutions. J. Plant Nut. 10:1787-1794 https://doi.org/10.1080/01904168709363719
  6. Flowers, T. J., P. F. Troke, and A. R. Yeo. 1977. The mechanism of salt tolerance in halophytes. Ann. Rev. Plant Physiol. 28:89-121 https://doi.org/10.1146/annurev.pp.28.060177.000513
  7. Jobes, J. A., G. J. Hoffman, and J. D. Wood. 1981. Leaching requirement for salinity control. II. Oat, tomato, and cauliflower. Agri. Water Managment 4:393-407 https://doi.org/10.1016/0378-3774(81)90029-9
  8. Kafkafi, U. 1984. Soil salinity under irrigation, pro-cess and management. I. Shainberg and J. Shalhevet, (eds.), Plant nutrition under saline conditions. Sprin-ger-Verlag, Berlin. p. 319-338
  9. Kebede, H., N. Martin, J. Nienhuis, and G. King. 1994. Leaf anatomy of two Lycopersicon species with contrasting gas exchange properties. Crop Sci. 34:108-113 https://doi.org/10.2135/cropsci1994.0011183X003400010019x
  10. Mizrahi, Y. 1982. Effects of salinity on tomato fruit ripening. Plant Physiol. 69:966-970 https://doi.org/10.1104/pp.69.4.966
  11. Mohammad, P. 1994. Handbook of plant and crop stress. Marcel Dekker Press, New York. p. 235-250
  12. Papadopoulos, I. 1983. Interactive effects of salinity and nitrogen on growth and yield of tomato plants. Plant & Soil 73:47-57 https://doi.org/10.1007/BF02197756
  13. Pasternak, D., Y. De-Malach, and I. Borovic. 1986. Irrigation with brackish water under desert conditions. VII. Effects of time of application of brackish water on production of processing tomatoes (Lycopersicon escu-lentum Mill.). Agr. Water Mang. 12:149-158 https://doi.org/10.1016/0378-3774(86)90013-2
  14. Perez-Alfocea, F., M. T. Estan, A. S. Cruz, and M. C. Bolarin. 1993. Effects of salinity on nitrate, total nitro-gen, soluble protein and free amino acid levels in tomato plants. J. Hort. Sci. 68:1021-1027
  15. Rhee, H.C., B.Y. Lee, Y.H. Choi, and Y.H. Choi. 2001. Physiological and anatomical characteristics of 2nd truss-limited tomatoes as affected by KCI or NaCl sup-plement to nutrient solution. J. Kor. Soc. Hort. Sci. 42:25-31
  16. Yamaguchi, Y. 1989. Initiation mechanism on the salt tolerance of rice varieties. Jpn. J. Soil Sci. Plant Nutr., 60:210-219