DOI QR코드

DOI QR Code

Fracture Characteristics of Concrete at Early Ages

초기재령 콘크리트의 파괴 특성

  • Lee, Yun (Department of Civil Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jin-Keun (Department of Civil Engineering, Korea Advanced Institute of Science and Technology)
  • 이윤 (한국과학기술원 토목공학과) ;
  • 김진근 (한국과학기술원 토목공학과)
  • Published : 2002.02.01

Abstract

The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By taking various strengths and ages, load-crack mouth opening displacement curves were obtained, and the results were analyzed by linear elastic fracture mechanics and the finite element method. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete ages from 1 day to 28 days. By numerical analysis four parameters of bilinear softening curve from 1 day to 28 days were obtained. The obtained fracture parameters and bilinear softening curves at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

본 연구의 목적은 유효탄성균열모델과 점성균열모델의 개념에 기초한 임계응력확대계수, 임계균열단개구변위와 파괴에너지, 이선형 연화 곡선같은 콘크리트의 파괴특성들을 초기재령 콘크리트에 관해 구명하는 것이다. 이를 위해 모드 I의 파괴를 일으킬 수 있는 쐐기쪼갬시험이 노치가 있는 육각형의 쐐기 시험체에 대하여 수행되었다. 강도와 재령의 변화에 따라 하중-균열입구변위 곡선이 얻어졌으며, 이것은 선형탄성 파괴역학과 유한요소법에 의해 분석되었다. 실험 결과를 분석한 결과, 재령 1일부터 재령 28일까지의 임계응력확대계수와 파괴에너지는 증가하였으며, 임계균열단개구변위는 감소하였다. 또한 수치해석을 통하여 재령 1일부터 재령 28일까지의 이선형 연화 곡선의 네 파라미터를 구할 수 있었다. 이렇게 얻어진 초개재령 콘크리트의 파괴특성치와 이선형 연화 곡선은 초기재령 콘크리트의 파괴 기준과 유한요소해석시의 입력 상수로서 사용될 수 있을 것이다.

Keywords

References

  1. Jenq, Y. S., and Shah, S, P., "A Two Parameter Fracture Model for Concrete," Journal of Engineering Mechanics, Vol.111, No.4, 1985, pp.1227-1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
  2. Bruhwiler, E., and Wittmann, F, H, "The Wedge Splitting Test, A Method of Performing Stable Fracture Mechanics Tests," Recent Publications, Ed, by Wittmann, F,H., 1988, pp.147-162,
  3. Shah, S. P., Swartz, E. S., and Ouyang, C, "Fracture Mechanics of Concrete," John Wiley & Sons, 1995, pp.210-214.
  4. Zollinger, D. G., and Tang, T., "Fracture Thoughness of Concrete at Early Ages," Materials Journal of ACI, Vol. 90, No.5, 1993, pp.463-471.
  5. Schutter, G, D., and Taerwe, L., "Fracture Energy of Concrete at Early Ages," Materials and Structures, Vol. 30, 1997, pp.67-71.
  6. Petersson, P. E., "Crack Growth and Development of Fracture Zone in Plain Concrete and Similar Materials," Report No, TVBM-1006, Division of Building Materials, Lund Institute of Technology, Lund, Sweden, 1981.
  7. Gopalaratnam, V. S., and Ye, B. S., "Numerical Characterization of the Nonlinear Fracture Process in Concrete," Engineering Fracture Mechanics, Vol. 40, No, 6, 1991, pp.991-1001 https://doi.org/10.1016/0013-7944(91)90165-W
  8. Wittmann, F. H, "Fracture Toughness and Fracture Energy of Concrete," Proceedings of the International Conference on Fracture Mechanics of Concrete, Lausanne, Swezerland, Elsevier, 1985, pp.163-175.
  9. Mihashi, H, and Nomura, N., "Correlation between Characteristics of Fracture Process Zone and Tension-Softening Properties of Concrete," Nuclear Engineering and Design, Vol. 165, pp.359-376, 1996. https://doi.org/10.1016/0029-5493(96)01205-8
  10. 이석홍, 김진근, 김희성, "고강도 콘크리트보의 파괴특성과 크기효과에 과한 수치해석적 연구," 대한토목학회 논문집, 제17권, I-3호, 1997. pp.361-371.
  11. Kincaid, D., and Cheney, W., "Numerical Analysis," Brooks/Cole Publishing Company, 1996, pp.499-511.