Chemistry and Biology of Ras Farnesyltransferase

  • Cho, Kwang-Nym (Bio-Organic Science Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Kee-In (Bio-Organic Science Division, Korea Research Institute of Chemical Technology)
  • Published : 2002.12.01

Abstract

Mutated forms of ras are found in many human tumors and the rate of incidence is significantly higher in colon and pancreatic cancers. The protein product from the ras oncogene is a small G-protein, $p21^{ras}{\;}(Ras)$ that is known to playa key role in the signal transduction cascade and cell differentiation and proliferation. Mutated Ras is unable to regulate itself and remains constantly activated, leading to uncontrolled cell growth. The function of Ras in signal transduction requires its location near the growth factor receptor at the cell membrane. However, Ras does not have a transmembrane domain. Ras requires farnesylation to increase its hydrophobicity and subsequent plasma membrane association for its transforming activity. This key post-translational modification is catalyzed by the enzyme Ras farnesyltransferase (FTase), which transfers a farnesyl group from farnesylpyrophosphate to the C-terminal cysteine of the Ras protein. The requirement has focused attention on FTase as a target for therapeutic intervention. Selective inhibition of FTase will prevent Ras protein from association with the plasma membrane, leading to a disruption of oncogenic Ras function.

Keywords

References

  1. Barbacid, M., Ras gene. Annu. Rev. Biochem., 56, 779-827 (1987) https://doi.org/10.1146/annurev.bi.56.070187.004023
  2. Barinaga, M., From bench top to bedside. Science, 278, 1036-1039 (1997) https://doi.org/10.1126/science.278.5340.1036
  3. Bolton, G. L., Sebolt-Leopold, J. S. and Hodges, J. C., In Bristol, J. A(Ed.), Annual reports in Medicinal Chemistry. vol. 29, Academic Press, New York, pp165-174, (1994)
  4. Bos, J. L., Ras Oncogenes in human cancer. Cancer Res., 49, 4682-4689 (1989)
  5. Brown, M. S., Goldstein, J. L., Paris, K. J., Burnier, J. P. and Marsters, J. J., Tetrapeptide inhibitors of protein farnesyItransferase: Amino-terminal substitution in phenylalaninecontaining tetrapeptides restores farnesylation. Proc. Natl. Acad.Sci. USA, 89, 8313-8316 (1992) https://doi.org/10.1073/pnas.89.17.8313
  6. Burn, C. J., Guitton, J.-D., Baudoin, B., Lelievre, Y., Duchesne,M., Parker,F., Fromage, N. and Commercon, A,Novel conformationally extended naphthalene-based inhibitors of farnesyltransferase. J. Med. Chem., 40, 1763-1767 (1997) https://doi.org/10.1021/jm9701177
  7. Buss, J. E. and Marsters, J. C., Jr., Farnesyl transferase inhibitors: The successes andsurprises of new class of potential cancer chemotherapeutics. Chemistry & Biology, 2, 787-791 (1995) https://doi.org/10.1016/1074-5521(95)90083-7
  8. Cadena, D. L. and Gill, G. N., Receptor tyrosine kinases. FASEB J., 6, 2332-2337 (1992) https://doi.org/10.1096/fasebj.6.6.1312047
  9. Casey, P. J., Biochemistry of protein prenylation. J. Lipid Res., 33, 1731-1740 (1992)
  10. Casey, P. J. and Seabra, M. C., Protein prenyltransferases. J. Biol. Chem., 271, 5289-5292 (1996) https://doi.org/10.1074/jbc.271.10.5289
  11. Casey, P. J., Solski, P. A, Der, C. J. and Buss, J. E., p21 Ras is modified by a farnesyl isoprenoid. Proc. Natl. Acad. Sci. USA, 86, 8323-8327 (1989) https://doi.org/10.1073/pnas.86.21.8323
  12. Clerc, F.-F., Guitton, J.-D., Fromage, N., Lelievre, Y., Duchesne, M., Tocque, B., JamesBurcouf, E., Commercon, A. and Becquart, J., Constrained analogues of kcvfm with improved inhibitory properties against farnesyltransferase. Bioorg. Med.Chem., 5, 1779-1784 (1995) https://doi.org/10.1016/0960-894X(95)00314-J
  13. Cox, A D. and Der, C. J., Farnesyltransferase inhibitors and cancer treatment: Targetingsimply Ras?. Biochim. Biophy Acta., 1333, F51-F71(1997)
  14. Der, C. J. and Cox, A. D., Isoprenoid modification and plasma membrane association: critical factors for ras oncogenicity. Cancer Cells, 3, 331-340 (1991)
  15. Dolence, J. M. and Poulter,C. D., A mechanism for posttranslationaI modifications of proteins by yeast protein farnesyltransferase. Proc. Natl. Acad. Sci. USA, 92, 5008-5011 (1995) https://doi.org/10.1073/pnas.92.11.5008
  16. Dunten, P, Kammlott, U., Crowther, R., Weber, D., Palermo, R. and Birktoft, J., Protein farnesyltransferase: Structure and implications for substrate binding. Biochemistry, 37, 7907-7912 (1998) https://doi.org/10.1021/bi980531o
  17. Edelstein, R. L., Weller, V. A. and Distefano, M. D., Stereo chemical analysis of the reaction catalyzed by yeast protein famesyltransferase. J. Org. Chem., 63, 5298-5299 (1998) https://doi.org/10.1021/jo980304s
  18. Fearon, E. R, Human cancer syndromes. Science, 278, 1043-1050(1997) https://doi.org/10.1126/science.278.5340.1043
  19. Fu, H.-W., Beese, L. S. and Casey, P. J., Kinetic analysis of zinc ligand mutants of mammalian protein famesyltransferase. Biochemistry, 37, 4465-4472 (1998) https://doi.org/10.1021/bi972511c
  20. Gibbs, J. B., Graham, S. L., Hartman, G. D., Koblan, K. S., Kohl, N. E., Omer, C. A. and Oliff, A, Farnesyltransferase inhibitors versus Ras inhibitors. Curr. Opin. Chem. Biol., 1, 197-203 (1997). https://doi.org/10.1016/S1367-5931(97)80010-5
  21. Grand, R. J. A and Owen D., The biochemistry of ras p21. Biochem. J., 279, 609-631(1991) https://doi.org/10.1042/bj2790609
  22. Gutierrez, L., Magee, A. I., Marshall, C. J. and Hancock, J. F, Post-translational processing of p21 ras is two-step and involves carboxyl-rnethylation and carboxyterminal proteolysis. EMBO J., 8, 1093-1098 (1989)
  23. Hamilton, A D. and Sebti, S. M., Inhibitors of Ras farnesyltransferase as novel antitumor agents. Drug News Perspect., 8, 138-145 (1995)
  24. Hancock, J. F., Magee, A. I., Childs, J. E. and Marshall, C. J., All ras proteins are polyisoprenylated but only some are palmitoylated. Cell, 57, 1167-1177 (1989) https://doi.org/10.1016/0092-8674(89)90054-8
  25. Heldin, C.-H. and Westermark B., Signal transduction by the receptors for platelet-derived growth factor. J. Cell Sci., 96, 193-196 (1990)
  26. Hightower, K. E. and Fierke, C. A., Zinc-catalyzed sulfur alkylation: Insights from protein farnesyltransferase., Curr. Opin. Chem. Biol., 3, 176-181 (1999) https://doi.org/10.1016/S1367-5931(99)80030-1
  27. Hightower, K. E., Huang, C.-c., Casey, P. J. and Fierke, C. A., H-Ras peptide and protein substrates bind protein farnesyltransferase as an ionized thiolate, Biochemistry, 31, 15555-15562 (1998)
  28. Hinterding, K., Alonso-Diaz, D. and Waldmann, H. Organic synthesis and biological signal transduction. Angew. Chem. Int. Ed. Engl., 37, 688-749 (1998) https://doi.org/10.1002/(SICI)1521-3773(19980403)37:6<688::AID-ANIE688>3.0.CO;2-B
  29. Hunt, J. T, Lee, Y. G., Leftheris, K., Seizinger, B., Carboni, J., Mabus, J., Ricca, C., Yan, N. and Manne, V, Potent, cell active, non-thiol tetrapeptide inhibitors offarnesyltransferase. J. Med. Chem., 39, 353-358 (1996) https://doi.org/10.1021/jm9507284
  30. Kobran, K. S., Culberson, J. C., Desolms, S. J., Giuliani, E. A, Mosser, S. D., Omer, C.A., Pitzenberger, S. M. and Bogusky, M. J., NMR studies of novel inhibitors bound to farnesyl protein transferase. Protein Sci., 4, 681-688 (1995) https://doi.org/10.1002/pro.5560040408
  31. Krengel, U., Schlichting, I., Scherer, A., Schumann, R., French, M., John, J., Kabsch, W, Pai, E. F. and Wittinghofer, A., Three-dimensional structures of H-ras p21mutants: Molecular basis for their inability to function as signal switch molecules. Cell, 62, 539-548 (1990) https://doi.org/10.1016/0092-8674(90)90018-A
  32. Leonard, D. M., Ras famesyltransferase: A new therapeutic target. J. Med. Chem., 40, 2971-2990 (1997) https://doi.org/10.1021/jm970226l
  33. Leonard, D. M., Shuler, K. R, Poulter, C. J., Eaton, S. R, Sawyer, T. K., Hodges, J. C., Su, T-Z., Scholten, J. D., Gowan, R C., Sebolt-Leopold, J. S. and Doherty, A. M., Structure-activity relationships of cysteine-locking pentapeptide derivatives that inhibit ras farnesyltransferase. J. Med. Chem., 40, 192-200 (1997) https://doi.org/10.1021/jm960602m
  34. Long, S. B. and Casey, P. J., Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate. Biochemistry, 37, 9612-9618 (1998) https://doi.org/10.1021/bi980708e
  35. Lowy, D. R. and Willumsen, B. M., Function and regulation of Ras. Annu. Rev. Biochem.,62, 851-891 (1993) https://doi.org/10.1146/annurev.bi.62.070193.004223
  36. Maignan, S., Guilloteau, J.-P., Fromage, N., Arnoux, B., Becquart, J. and Ducruix, A, Crystal structure of the mammalian Grb2 adaptor. Science, 268, 291-293 (1995) https://doi.org/10.1126/science.7716522
  37. Masrers, J. C., Jr., McDowell, R. S., Reynilds, M. E, Oare, D. A., Somers, T. C., Stanley,M. S., Rawson, T. E., Struble, M. E., Burdick, D. J., Chan, K. S., Duarte, C. M., Paris, K. J., Tom, J. Y, Wan, D. T, Xue, Y and Burnier, J. P., Benzodiazepinepeptidomimetic inhibitors of farnesylferase. Bioorg. Med. Chem., 2, 949-957(1994) https://doi.org/10.1016/S0968-0896(00)82044-1
  38. Matthews, R. G. and Goulding, C. W., Enzyme-catalyzed methyl transfers to thiols: Therole of zinc. Curr. Opin. Chem. Biol., 1, 332-339(1997) https://doi.org/10.1016/S1367-5931(97)80070-1
  39. McCormick, F., Ras GTPase activating protein: Signal transmitter and signalterminator. Cell, 56, 5-8 (1989) https://doi.org/10.1016/0092-8674(89)90976-8
  40. McCormick, F, How receptors turn Ras on. Nature, 363, 15-16 (1993) https://doi.org/10.1038/363015a0
  41. McCormick, F., Raf: The holy grail of Ras biology? Trends Cell Biol., 1994, 4, 347-350(1994) https://doi.org/10.1016/0962-8924(94)90075-2
  42. Moodie, S. A. and Wolfman, A., The 3Rs of life: Ras, Raf and Growth regulation. TlG,10, 44-48 (1994)
  43. Mu, Y, Omer, C. A and Gibbs, R. A, On the stereochemical course of human protein farnesyltransferaes. J. Am. Chem. Soc., 118, 1817-1823(1996) https://doi.org/10.1021/ja953005i
  44. Pai, E. F., Krengel, U., Gregoty, A. P., Goody, R. S., Kabsch, W. and Wittinghofer, A., Refiend crystal Structure of the triphosphate conformation of H-ras p21 at 1.35 Aresolution: Implications for the mechanism of GTP hydrolysis. EMBO J., 9, 2351-2359 (1990)
  45. Park, H.-W. and Beese, L. S., Protein farnesyltransferase. Curr. Opin. Struct. Biol., 7,873-880 (1997) https://doi.org/10.1016/S0959-440X(97)80160-1
  46. Park, H.-W, Boduluri, S. R, Moornaw, J. F., Casey, P. J. and Beese, L. S., Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution. Science, 275, 1800-1805 (1997) https://doi.org/10.1126/science.275.5307.1800
  47. Patel, D. V., Gordon, E. M., Schmidt, R. J., Weller, H. N., Young, M. G., Zahler, R, Barbacid, M., Carboni, J. M., GulloBrown, J. L., Huniham, L., Ricca, C., Robinson, S., Seizinger, B. R, Tuomari, A V and Mann, V, Phosphinyl acid-based bisubstrate analog inhibitors of Ras famesyl protein transferase. J. Med. Chem., 38, 435-442 (1995) https://doi.org/10.1021/jm00003a006
  48. Pawson, T and Schlessinger, J., SH2 and SH3 domains. J. Curro Biol. 3, 434-442 (1993) https://doi.org/10.1016/0960-9822(93)90350-W
  49. Reiss, Y, Brown, M. S. and Goldstein, J. L., Divalent cation and prenyl pyrophosphate specificities of the protein famesyl transferase from rat brain, a zinc metalloenzyme. J. Biol. Chem., 267, 6403-6408 (1992)
  50. Reiss, Y, Goldstein, J. L., Seabra, M. C., Casey, P. J. and Brovn, M. S., Inhibition of purified p21 ras farnesyl protein transfease by Cys-AAX tetrapeptide. Cell, 62, 81-88 (1990) https://doi.org/10.1016/0092-8674(90)90242-7
  51. Stricklanc, C. L., Windsor, W. T., Syto, R., Wang, L., Bond, R., Wu, Z. Schwartz, J., Le, H. V., Beese, L. S. and Weber, P. C., Crystal structure of farnesyl protein transferase complexed with a CaaX peptide and farnesyl diphosphate analogue. Biochemistry, 37, 16601-16611(1998) https://doi.org/10.1021/bi981197z
  52. Weller, V. A and Distefano, M. D., Measurement of the $\alpha$-Secondary kinetic isotope effect for a prenyltransferase by MALDI mass spectrometry. J. Am. Chem. Soc., 120, 7975-7976 (1998) https://doi.org/10.1021/ja980353m
  53. Willumsen, B. M., Christensen, A, Hubert, N. L., Papageorge, A. G. and Lowy, D. R., The p21 ras C-terminus is required for transformation and membrane association. Nature, 310, 583-586 (1984) https://doi.org/10.1038/310583a0