DOI QR코드

DOI QR Code

MAPPING PROPERTIES OF THE MARCINKIEWICZ INTEGRALS ON HOMOGENEOUS GROUPS

  • Published : 2002.01.01

Abstract

Under the cancellation property and the Lipschitz condition on kernels, we prove that the Marcinkiewicz integrals defined on a homogeneous group H are bounded from $H^1$(H) to $L^1$(H), from $L_{c}$ $^{\infty}$(H) to BMO (H), and from $L^{p}$ (H) to $L^{p}$ (H) for 1 < p < $\infty$ assuming the $L^{q}$ -boundedness for some q > 1.for some q > 1.

Keywords

References

  1. A. Benedek, A. Calderon, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365 https://doi.org/10.1073/pnas.48.3.356
  2. A. P. Calderon, On the theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc. 68 (1950), 55-61. https://doi.org/10.2307/1990538
  3. A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139 https://doi.org/10.1007/BF02392130
  4. J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561. https://doi.org/10.1007/BF01388746
  5. C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), 137-193 https://doi.org/10.1007/BF02392215
  6. G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Princeton Univ. Press, 1982
  7. J. Marcinkiewicz, Sur quelques integrales de type de Dini, Annales de la Société Polonaise 17 (1938), 42-50
  8. E. M. Stein, On the function of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466 https://doi.org/10.1090/S0002-9947-1958-0112932-2
  9. E. M. Stein, Singular integrals and differeniability properties of functions, Princeton Univ. Press, 1970
  10. E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, 1993
  11. E. M. Stein and G. Weiss, On the interpolation of analytic families of operators acting on $H^{p}$ spaces, Tôhoku Math. J. 9 (1957), 318-339. https://doi.org/10.2748/tmj/1178244785
  12. A. Torchinsky, Real-variable methods in harmonic analysis, Academic Press, 1986
  13. A. Torchinsky and S. Wang, A note on the Marcinkiewicz integral, Colloq. Math. 61-62 (1990), 235-243.
  14. A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170-204 https://doi.org/10.1090/S0002-9947-1944-0009966-5
  15. A. Zygmund, Trigonometric Series, 2nd ed. Vol. 2, Cambridge Univ. Press, Cambridge, 1968.