Plasmid-Mediated Arsenical and Antimonial Resistance Determinants (ars) of Pseudomonas sp. KM20

  • Published : 2002.02.01

Abstract

Bacteria have evolved various types of resistance mechanism to toxic heavy metals, such as arsenic and antimony. An arsenical and antimonial resistant bacterium was isolated from a shallow creek draining a coal-mining area near Taebaek City, in Kangwon-Do, Korea. The isolated bacterium was identified and named as Pseudomonas sp. KM20 after biochemical and physiological studies were conducted. A plasmid was identified and its function was studied. Original cells harboring the plasmid were able to grow in the presence of 15 mM sodium arsenite, while the plasmid-cured (plasmidless) strain was sensitive to as little as 0.5 mM sodium arsenate. These results indicated that the plasmid of Pseudomonas sp. KM20 does indeed encode the arsenic resistance determinant. In growth experiments, prior exposure to 0.1 mM arsenate allowed immediate growth when they were challenged with 5 mM arsenate, 5 mM arsenite, or 0.1 mM antimonite. These results suggested that the arsenate, arsenite, and antimonite resistance determinants of Pseudomonas sp. KM20 plasmid were indeed inducible. When induced, plasmid-bearing resistance cells showed a decreased accumulation $of\;73^As$ and showed an enhanced efflux $of\;^73As$. These results suggested that plasmid encoded a transport system that extruded the toxic metalloids, resulting in the lowering of the intracellular concentration of toxic oxyanion. In a Southern blot study, hybridization with an E. coli R773 arsA-specific probe strongly suggested the absence of an arsA cistron in the plasmid-associated arsenical and antimonial resistance determinant of Pseudomonas sp. KM20.

Keywords

References

  1. Anal. Biochem. v.162 A rapid chemical procedure for isolation and purification of chromosomal DNA from Gram-negative bacilli Beji, A. D.;D. Izard;F. Gavini;H. Leclere;M. Leseine-Delstanche;J. Krembel https://doi.org/10.1016/0003-2697(87)90005-4
  2. FEMS Microbiol. Lett. v.139 The arsenical resistance operon of IncN plasmid R46 Bruhn, D. F.;J. Li;S. Silver;F. Roberto;B. P. Rosen https://doi.org/10.1111/j.1574-6968.1996.tb08195.x
  3. J. Bacteriol. v.177 The ars operon of Escherichia coli confers arsenical and antimonial resistance Carlin, A.;W. Shi;S. Dey;B. P. Rosen https://doi.org/10.1128/jb.177.4.981-986.1995
  4. Nature v.361 Arsenical-resistant trypanosomes lack an unusual adenosine transporter Carter, N. S.;A. H. Fairlamb https://doi.org/10.1038/361173a0
  5. J. Bacteriol. v.112 Genetic basis of the biodegradation of salicylated in Pseudomonas Chakrabarty, A. M.
  6. J. Biol. Chem. v.261 Nucleotide sequence of the structural genes for an anion pump: The plasmid-encoded arsenical resistant operons Chen, C. -M.;T. Misra;S. Silver;B. P. Rosen
  7. J. Bacteriol v.177 An Escherichia coli chromosomal operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria Diorio, C.;J. Cai;J. Marmor;R. Shinder;M. S. DuBow
  8. J. Microbiol. Biotechnol. v.11 Catabolic plasmid-mediated heavy metal resistance in herbicide diuron-degrading Pseudomonas species El-Deeb, Bahig A.
  9. J. Microbiol. Biotechnol. v.11 Inducible chromate reducing activity in Pseudomonas aeruginosa isolated from a leather tannery effluent Ganguli, A.;A. K. Tripathi
  10. American Society for Microbiology Methods for General and Molecular Bacteriology Gerhardt, P.;R. G. E. Murray;W. A. Wood;N. R. Krieg
  11. Metals and Microorganism Hughes, M. N.;R. K. Poole
  12. Proc. Natl. Acad. Aci. v.89 Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258 Ji, G.;S. Silver https://doi.org/10.1073/pnas.89.20.9474
  13. J. Ind. Microbiol. v.14 Bacterial resistance mechanism for heavy metals of environmental concern Ji, G.;S. Silver https://doi.org/10.1007/BF01569887
  14. J. Microbiol. Biotechnol. v.11 Effect of ionic copper toxicity on the growth of green alga, Selenastrum capricornutum Kim, M.-K.;Ralph E. H. Smith
  15. Bergey's Manual of Systematic Bacteriology Krieg, N. R.;J. G. Holt
  16. Environ. Toxicol. Chem. v.9 Arsenic uptake and transfer in a simplified estuarine food chain Lindsay, D. A.;J. G. Cooksey https://doi.org/10.1897/1552-8618(1990)9[391:AUATIA]2.0.CO;2
  17. Proc. Natl. Acad. Sci. v.79 Energetics of plasmid-mediated arsenate resistance in Escherichia coli Mobley, H. L. T.;B. P. Rosen https://doi.org/10.1073/pnas.79.20.6119
  18. Metals: Microbes Interaction Poole, R. K.;G. M. Gadd
  19. J. Biol. Chem. v.263 Molecular characterization of an anion pump. The arsA gene product is an arsenite (antimonate)-stimulated ATPase Rosen, B. P.;U. Weigel;C. Karkaria;P. Gangola
  20. J. Bacteriol. v.174 Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267 Rosenstein, R.;A. Peschel;B. Wieland;F. Gotz https://doi.org/10.1128/jb.174.11.3676-3683.1992
  21. Molecular Cloning: A Laboratory Manual(2nd ed.) Sambrook, J.;E. F. Fritsch;T. Maniatis
  22. J. Bacteriol. v.180 The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite Sato, T.;Y. Kobayashi
  23. Proc. Natl. Acad. Aci. v.79 Energy-dependent arsenate efflux: The mechanism of plasmid mediated resistance Silver, S.;D. Keach https://doi.org/10.1073/pnas.79.20.6114
  24. Annu. Rev. Microbiol. v.50 Bacterial heavy metal resistance: New surprises Silver, S.;L. T. Phung https://doi.org/10.1146/annurev.micro.50.1.753
  25. J. Bacteriol. v.146 Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (Ⅲ) in Escherichia coli and Staphylococcus aureus Silver, S.;K. Budd;K. M. Leahy;W. V. Shaw;D. Hammond;R. P. Novick;G. R. Willsky;M. H. Malamy;H. Rosenberg
  26. Mol. Microbiol. v.8 Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacteria plamids Silver, S.;G. Ji;S. Broer;S. Dey;D. Don;B. P. Rosen https://doi.org/10.1111/j.1365-2958.1993.tb01607.x
  27. J. Microbiol. Biotechnol. v.11 Esolation and characterization of antibiotic and heavy metal-resistant Pseudomonas aeruginosa from different polluted waters in Sohag District Egypt Soltan, El-Sayed. M.
  28. J. Biol. Chem. v.265 Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein Tisa, L. S.;B. P. Rosen
  29. J. Bacteriol. v.174 ATP-Dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis Tsai, K. J.;K. P. Yoon;A. R. Lynn https://doi.org/10.1128/jb.174.1.116-121.1992
  30. Mar. Ecol. Prog. Ser. v.83 Construction materials in estuaries: Reduction in the epibiotic community on chromated copper arsenate (CCA) treated wood Weis, J. S.;P. Weis https://doi.org/10.3354/meps083045
  31. Mol. Microbiol. v.8 The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon Wu, J.;B. P. Rosen https://doi.org/10.1111/j.1365-2958.1993.tb01605.x
  32. J. Biol. Chem. v.267 Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase Wu, J.;L. S. Tisa;B. P. Rosen
  33. J. Biol. Chem. v.271 The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein Xu, C.;W. Shi;B. P. Rosen https://doi.org/10.1074/jbc.271.5.2427
  34. J. Microbiol. Biotechnol. v.8 Isolation and characterization of Pseudomonas sp. KM10, a cadmium and mercury-resistant and phenol-degrading bacterium Yoon, K. P.
  35. J. Bacteriol. v.173 Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus Yoon, K. P.;T. K. Misra;S. Silver https://doi.org/10.1128/jb.173.23.7643-7649.1991