Xylanase를 생산하는 Bacillus sp. AMX-4 균주의 분리와 효소 생산성

Isolation and Enzyme Production of a Xylanase-producing Strain, Bacillus sp. AMX-4.

  • 윤기홍 (우송대학교 식품생명과학부) ;
  • 설숙자 (우송대학교 식품생명과학부) ;
  • 조효찬 (우송대학교 식품생명과학부) ;
  • 이미성 (씨티씨바이오 중앙연구소) ;
  • 최준호 (씨티씨바이오 중앙연구소) ;
  • 조기행 (씨티씨바이오 중앙연구소)
  • 발행 : 2002.06.01

초록

토양으로 부터 xylan 분해능이 우수한 Bacillus sp. AMX-4를 분리하고 동정하였는데 분리균의 화학조성은 B. subtilis와 유사성을 보였다. 분리균이 생산하는 xylanase는 50℃와 pH 6에서 최대활성을 보였다. 배지의 부가 탄소원을 첨가하여 Bacillus sp. AMX-4을 배양한 결과 xylose를 첨가한 배지에서 xylanase 생산성이 가장 증가하는 것으로 나타났으며, xylose를 1.5%(w/v)가 되도록 첨가하였을 때 배양상등액의 xylanase 활성이 29.2 U/ml로 약 16배 정도 생산성이 증가하였다. Xylose를 첨가한 배지와 첨가하지 않은 배지에서 Bacillus sp. AMX-4를 배양하여 균의 성장과 효소 생산성을 비교한 결과 xylose를 첨가한 배지에서 효소 생산뿐만 아니라 분리균의 최대 성장정도도 증가한 것으로 보아 xylose는 균의 성장과 xylanase 생합성을 동시에 유도하는 것으로 판단된다. 또한 xylanase는 균의 성장과 연계되어 생산되는 것으로 확인되었다.

A bacterium producing the extracellular xylanase was isolated from soil and has been identified as a Bacillus sp. strain. The isolate, named Bacillus sp. AMX-4, was shown to be similar to B. subtilis strain on the basis of its chemical compositions. The xylanase of culture supernatant was most active at 50℃ and pH 6.0. The additional carbon sources including monosaccharides, disaccharides, wheat bran, and rice straw increased the enzyme productivity. Especially, the maximum xylanase productivity was reached 29.2 units/ml in LB medium supplemented with 1.5% (w/v) xylose, which was 16-folds more than that in LB medium. As the results of investigating the effects of xylose on cell growth and xylanase productivity of Bacillus sp. AMX-4, increase of xylanase production was owing to the induction of xylanase biosynthesis. It was also found that the enzyme production was in association with the growth of Bacillus sp. AMX-4.

키워드

참고문헌

  1. Appl. Environ. Microbiol. v.57 Purification and cooperative activity of enzymes constituting the xylandegrading system of Thermomonospora fusca Bachmann, S. L.;A. J. McCarthy
  2. J. Ind. Microbiol. Biotechnol. v.24 Production and characterization of thermostable xylanase and pectinase from a Streptomyces sp. OG-11-3 Beg, Q. K.;B. Bhushan;M. Kapoor;G. S. Hoondal https://doi.org/10.1038/sj.jim.7000010
  3. Trends Biotechnol v.3 Microbial xylanolytic systems Biely, P. https://doi.org/10.1016/0167-7799(85)90004-6
  4. J. Agric. Food Chem. v.47 Fractionation-reconstitution experiments provide insight into the role of endoxylanases in bread-making Courtin, C. M.;A. Roelants;J. A. Delcour https://doi.org/10.1021/jf981178w
  5. Appl. Environ. Microbiol. v.59 Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6 Khashin, A.;I. Alchnati;Y. Shoham
  6. Kor. J. Appl. Microbiol. Biotechnol. v.28 Isolation of a thermophilic Bacillus sp. producing the thermostable cellulase-free xylanase, and prperties of the enzyme Kim, D. J.;H. J. Shin;K. -H. Yoon
  7. J. Bacteriol. v.183 Characterization of xylanolytic enzymes in Clostridium cellulovorans: expression of xylanase activity dependent on growth substrates Kosugi, A.;K. Murashima;R.H. Doi https://doi.org/10.1128/JB.183.24.7037-7043.2001
  8. Appl. Microbiol. Biotechnol v.54 Coexpression of the Bacillus pumilus beta-xylosidase (xynB) gene with the Trichoderma reesei beta xylanase 2 (xyn2) gene in the yeast Saccharomyces cerevisiae La Grange, D. C.;M. Claeyssens;I. S. Pretorius;W.H. Van Zyl https://doi.org/10.1007/s002530000372
  9. J. Bacteriol v.10 characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-R1 Lee, Y. E.;E. Lowe;B. Henrissat;J. G. Zeikus
  10. Process Biochem. v.34 Induction and glucose reprossion of endo-β-xylnase in the yeast Trichosporon cutaneum SL409 Liu, W.;Y. Lu;G. Ma https://doi.org/10.1016/S0032-9592(98)00071-5
  11. Lett v.20 Xylanase production by a new alkali-tolerant isolate of Bacillus Lopez, C.;A. Blanco;F. I. J. Pastor
  12. Br. Poult. Sci. v.42 Effects of variety, the 1B/1R translocation and xylanase supplementation on nutritive value of wheat for broilers McCracken, K. J.;M.R. Bedford;R. A. Stewart https://doi.org/10.1080/00071660120088452
  13. Anal. Chem. v.31 Use of dinitrosalicylic acid reagent for determination of reducing sugar Miller, G. L. https://doi.org/10.1021/ac60147a030
  14. Recombinant DNA Techniques-An introduction Rodriquez, R. L.;R. C. Tait
  15. Appl. Environ. Microbiol v.64 Induction of mannanase, xylanase and endoglucanase activities in Sclerotium rolfsii Sachslehner, A.;B. Nidetzky;K. D. Kulbe;D. Haltrich
  16. Process Biochem. v.33 Production of xylanase by Aspergillus awamori on synthetic medium in shake flask cultures Siedenberg, D.;S. R. Gerlach;K. Schugerl;M. L. F. Giuseppin;J. Hunik https://doi.org/10.1016/S0032-9592(97)00090-3
  17. Crit. Rev. Biotechnol. v.17 Xylanolytic enzymes from fungi and bacteria Sunna, A.;G. Antranikian https://doi.org/10.3109/07388559709146606
  18. Enzyme Microb. Technol. v.14 Two major xylanases of Trichoderma reesei Tenkanen, H.;J. Plus;K. Poutanen https://doi.org/10.1016/0141-0229(92)90128-B
  19. J. Gen. Microbiol. v.139 Xylanases from Streptomyces cyaneus: their production, purification and characterization Wang, P.;J.C. Mason;P. Broda https://doi.org/10.1099/00221287-139-9-1987
  20. Appl. Environ. Microbiol. v.61 Two extremely thermostable xylanase of the hyperthermophlic bacterium Thermotoga maritima MSB8 Winterhalter, C.;W. Liebl
  21. Biosci. Biotechnol. Biochem. v.62 Xylanase induction by L-sorbose in a fungus Trichoderma reesei PC-3-7 Xu, J.;M. Nogawa;H. Okada;Y. Morikawa https://doi.org/10.1271/bbb.62.1555