Kinetics of $Fe^{2+}$ Oxidation by Acidithiobacillus ferrooxidans Using Total Organic Carbon Measurement

  • Lom, In-Soo (Department of Environmental Science and Engineering, Kwangju Institute of Science and Technology) ;
  • Jang, Hyun-Young (Department of Environmental Science and Engineering, Kwangju Institute of Science and Technology) ;
  • Lee, Jong-Un (Department of Environmental Science and Engineering, Kwangju Institute of Science and Technology)
  • Published : 2002.04.01

Abstract

Kinetic experiments on the biological oxidation of $Fe^{2+}$ by Acidithiobacillus ferrooxidans were conducted by measuring the total organic carbon content. The total organic carbon in the solution was determined with different initial concentrations of $Fe^{2+}$(4, 9, 15, and 20 mg/ml). The growth of At. ferrooxidans and substrate utilization were described by the Monod expression. The total organic carbon was found to be an indicator of the biomass concentration and thus may be effectively utilized for estimating cell growth rates in kinetic model development.

Keywords

References

  1. American Public Health Association, American Water Works Association, and Water Environment Federation. 1995. Standard Methods for the Examination of Water and Wastewater. 19th Ed. APHA, Washington, DC, U.S.A
  2. Barrett, J., M. N. Hughes, G. I. Karavaiko, and P. A. Spencer. 1993. Metal Extraction by Bacterial Oxidation of Minerals. Ellis Horwood, Chichester
  3. Barron, J. L. and D. R. Luecking. 1990. Growth and maintenance of Thiobacillus ferrooxidans cells. Appl. Environ. Microbiol. 56: 2801-2806
  4. Boon, M., M. Snijder, G. S. Hansford, and J. J. Heijnen. 1998. The oxidation kinetics of zinc sulphide with Thiobacillus ferrooxidans. Hydrometallurgy 33: 137-152
  5. Braddock, J. F., H. V. Luong, and E. J. Brown. 1984. Growth kinetics of Thiobacillus ferrooxidans isolated from arsenic mine drainage. Appl. Environ. Microbiol. 48: 48-55
  6. Dastidar, M. G., A. Malik, and P. K. Roychoudhury. 2000. Biodesulphurization of Indian (Assam) coal using Thiobacillus ferrooxidans (ATCC 13984). Energy Conversion and Management 41: 375-388
  7. Dew, D. W., E. N. Lawson, and J. L. Broadhurst. 1998. The BIOX$^(R)$ process for biooxidation of gold-bearing ore or concentrates, pp. 45-80. In D. E. Rawlings (ed.), Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, Germany
  8. DHughes, P., P. Cezac, T. Cabral, F. Battaglia, X. M. Truong- Meyer, and D. Morin. 1997. Bioleaching of a cobaltiferous pyrite: A continuous laboratory-scale study at high solids concentration. Miner. Eng. 10: 507-527
  9. Fowler, T. A., P. R. Holmes, and F. K. Crundwell. 1999. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 65: 2987-2993
  10. Jensen, A. B. and C. Webb. 1995. Ferrous sulphate oxidation using Thiobacillus ferrooxidans: A review. Process Biochem. 30: 225-236
  11. Kelly, D. P. and C. A. Jones. 1978. Factors affecting metabolism and ferrous iron oxidation in suspension and batch culture of Thiobacillus ferrooxidans: Relevance to ferric leach solution regeneration, pp. 19-43. In L. E. Murr, A. E. Torma, and J. A. Brierley (eds.), Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena. Academic Press, New York, U.S.A
  12. McDonald, D. G. and R. H. Clack. 1970. The oxidation of aqueous ferrous sulphate by Thiobacillus ferrooxidans. Can. J. Chem. Eng. 48: 669-676
  13. Monod, J. 1949. The growth of bacterial cultures. Annu. Rev. Microbiol. 3: 371-394
  14. Nyavor, K., N. O. Egiebor, and P. M. Fedorak. 1996. The effect of ferric ion on the rate of ferrous oxidation by Thiobacillus ferrooxidans. Appl. Microbiol. Biotechnol. 45: 688-691
  15. Nemati, M. and C. Webb. 1997. A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans. Biotechnol. Bioeng. 53: 478-485
  16. Shrihari, J. M., R. Kumar, and K. S. Gandhi. 1990. Modelling of Fe2+ oxidation by Thiobacillus ferrooxidans. Appl. Microbiol. Biotechnol. 33: 524-528
  17. Silverman, M. P. and D. G. Lundgren. 1959. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol. 77: 642-647
  18. Smith, J. R. 1988. Microbial ferrous iron oxidation in acidic solution. J. Water Pollut. Control Fed. 60: 518-529
  19. Tomizuka, N. and H. Yagisawa. 1976. Continuous leaching of uranium by Thiobacillus ferrooxidans. Agric. Biol. Chem. 40: 1019-1025