Characterization of Subtilein, a Bacteriocin from Bacillus subtilis CAU131 (KCCM 10257)

  • Park, Sung-Yong (Department of Food Science and Technology, Chung-Ang University) ;
  • Yang, Yong-Jae (Department of Food Science and Technology, Chung-Ang University) ;
  • Kim, Young-Bae (Graduate School of Biotechnology, Korea University) ;
  • Hong, Jae-Hoon (Department of Food Science and Technology, Kon-Yang University) ;
  • Lee, Chan (Department of Food Science and Technology, Chung-Ang University)
  • Published : 2002.04.01

Abstract

Bacillus subtilis CAU131 (KCCM 10257) isolated from a fermented shrimp product produces subtilein, tentatively named as a bacteriocin, which exhibited a bactericidal effect against closely related species such as Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 11778, and several other strains of Bacillus sp. The purification of the subtilein was achieved by applying a mono-Q anion exchange chromatography on FPLC and $C_18$ reverse-phase chromatography on HPLC. After purification, specific activity of subtilein was increased about 3,000-fold compared with culture broth and its molecular mass was about 5,000 Da on SDS-PAGE. The antimicrobial activity of subtilein was well maintained at acidic and neutral pHs between 3 and 8. Subtilein was relatively heat stable, and its antimicrobial activity remained for 2 h at $80^{\circ}C$. However, the activity was reduced after heating at $100^{\circ}C$, and about $80\%$ of the activity was found after 1 h incubation at $100^{\circ}C$. The treatment of Bacillus subtilis ATCC 6633 with subtilein led to morphological changes in stationary-phase cells and most cells appeared to be lysed.

Keywords

References

  1. Babasaki, K., T. Takyo, Y. Shimonishi, and K. Kurahashi. 1985. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: Isolation, structural analysis and biogenesis. J. Biochem. 98: 583-603
  2. Banerjee, S. and J. N. Hansen. 1988. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem. 263: 9508-9514
  3. Bhunia, A. K., M. C. Johnson, and B. Ray. 1987. Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Indust. Microbiol. 2: 319-322
  4. Cintas L. M., J. M. Rodriguez, M. F. Fernandez, K. Sletten, I. F. Nes, P. E. Hernandez, and H. Holo. 1995. Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl. Environ. Microbiol. 61: 2643-2648
  5. Crupper, S. S., A. J. Gies, and J. J. Iandolo. 1997. Purification of Staphylococcin BacR1, a broad-spectrum bacteriocin. Appl. Environ. Microbiol. 63: 4185-4190
  6. Eckner, K. F. 1992. Bacteriocins and food application. Dairy Food Environ. Sani. 12: 204-209
  7. Galvez, A., M. Maqueda, E. Valdivia, A. Quesada, and E. Montoya. 1986. Characterization and partial purification of a broad spectrum antibiotic AS-48 produced by Streptococcus faecalis. Can. J. Microbiol. 32: 765-771
  8. Giulian, G. G., R. L. Moss, and M. Greaser. 1983. Improved methodology for analysis and quantitation of proteins on one-dimensional silver-stained slab gels. Anal. Biochem. 129: 277-287
  9. Hoerner, T., V. Ungermann, H. Zahner, H. P. Fiedler, R. Utz, R. Kellner, and G. Jung. 1990. Comparative studies on the fermentative production of lantibiotics by Staphylococci. Appl. Microbiol. Biotechnol. 32: 511-517
  10. Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey’s Manual of Determinative Bacteriology, 9th ed. Williams and Wilkins. Baltimore, U.S.A
  11. Horn, N., M. I. Martinez, J. M. Martinez, P. E. Hernandez, M. J. Gasson, J. M. Rodriguez, and H. M. Dodd. 1998. Production of pediocin PA-1 by Lactococcus lactis using the lactococcin A secretory apparatus. Appl. Environ. Microbiol. 64: 818-823
  12. Hurst, A. 1981. Nisin. Adv. Appl. Microbiol. 27: 85-123 https://doi.org/10.1016/S0065-2164(08)70342-3
  13. Hyronimus B., M. C. Lee, and M. C. Urdaci. 1998. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J. Appl. Microbiol. 85: 42-50
  14. Kim, S. I., J. Y. Chang, I. C. Kim, and K. Lee. 2001. Characterization of bacteriocin from Bacillus subtilis cx1. Kor. J. Appl. Microbiol. Biotechnol. 29: 50-55
  15. Kim, S. Y., Y. M. Lee, S. Y. Lee, Y. S. Lee, J. H. Kim, C. Ahn, B. C. Kang, and G. E. Ji. 2001. Synergistic effect of citric acid and pediocin K1, a bacteriocin produced by Pediococcus sp. K1, on inhibition of Listeria monocytogenes. J. Microbiol. Biotechnol. 11: 831-837
  16. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-86
  17. Koo, K. M., N. K. Lee, Y. I. Hwang, and H. D. Paik. 2000. Identification and partial characterization of lacticin SA72, a bacteriocin produced by Lactococcus lactis SA72 isolated from Joet-gal. J. Microbiol. Biotechnol. 10: 488-495
  18. Konisky, J. 1982. Collicins and other bacteriocins with established modes of action. Annu. Rev. Microbiol. 36: 125- 144
  19. Mah, J. H., K. S. Kim, J. H. Park, M. W. Byun, Y. B. Kim, and H. J. Hwang. 2001. Bacteriocin with a broad antimicrobial spectrum, produced by Bacillus sp. isolated from Kimchi. J. Microbiol. Biotechnol. 11: 577-584
  20. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680-685 https://doi.org/10.1038/227680a0
  21. Larsen, A. G., F. K. Vogensen, and J. Josephsen. 1993. Antimicrobial activity of lactic acid bacteria isolated from sour dough: Purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401, J. Appl. Bacteriol. 75: 113-122
  22. Marco, J., V. Belkum, J. Kok, G. Venema, H. Holo, I. F. Nes, W. N. Konings, and T. Abee. 1991. The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J. Bacteriol. 173: 7934-7941
  23. Montville, T. J. and K. Winkowaski. 1977. Biologically based preservation systems and probiotic bacteria, pp. 557- 577. In M. P. Doyle, L. R. Beuchat, and T. J., Montville (eds.), Food Microbiology: Fundamentals and Frontiers, American Society for Microbiology; Washington, DC, U.S.A
  24. Naclrio, G., E. Ricca, M. Sacco, and M. D. Felice. 1993. Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl. Environ. Microbiol. 59: 4313-4315
  25. Nakano, M. M. and P. Zauber. 1988. Anaerobic growth of a strict aerobe. Annu. Rev. Microbiol. 52: 165-190
  26. Nielsen, J. W., J. S. Dickson, and J. D. Crouse. 1990. Use of bacteriocin produced by Pediococcus acidilactici to inhibit Listeria monocytogenes associated with fresh meat. Appl. Environ. Microbiol. 56: 2142-2145
  27. Paik H. D., S. S. Bae, S. H. Park, and J. G. Pan. 1997. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J. Indust. Microbiol. Biotechnol. 19: 294-298
  28. Paik, H. D., N. K. Lee, K. H. Lee, Y. I. Hwang, and J. G. Pan. 2001. Identification and partial characterization of cerein BS229, a bacteriocin produced by Bacillus cereus. J. Microbiol. Biotechnol. 11: 195-200
  29. Piva, A. and D. R. Headon. 1994. Pediocin A, a bacteriocin produced by Pediococcus pentosaceus FBB61. Microbiology 140: 697-702
  30. Pucci, M. J., E. R. Vedamuthu, B. S. Kunka, and P. A. Vandenbergh. 1988. Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC 1.0. Appl. Environ. Microbiol. 54: 2349-2353
  31. Schuler, F., R. Benz, and H. G. Sahl. 1989. The peptide antibiotic subtilin acts by formation of voltage-dependent multi-state pores in bacterial and artificial membranes. Eur. J. Biochem. 182: 181-186
  32. Tramer, J. and G. G. Fowler. 1964. Estimation of nisin in food. J. Sci. Food Agric. 15: 522-528
  33. Von Tersch, M. A. and B. C. Carlton. 1983. Bacteriocin from Bacillus megaterium ATCC 19123: Comparative studies with megacin A-216. J. Bacteriol. 155: 866-871